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Deep Reinforcement Learning (DRL) has received a lot of attention from the research community in recent years. As the technology
moves away from game playing to practical contexts, such as autonomous vehicles and robotics, it is crucial to evaluate the quality of
DRL agents.

In this paper, we propose a search-based approach to test such agents. Our approach, implemented in a tool called Indago, trains a
classifier on failure and non-failure environment (i.e., pass) configurations resulting from the DRL training process. The classifier is
used at testing time as a surrogate model for the DRL agent execution in the environment, predicting the extent to which a given
environment configuration induces a failure of the DRL agent under test. The failure prediction acts as a fitness function, guiding the
generation towards failure environment configurations, while saving computation time by deferring the execution of the DRL agent in
the environment to those configurations that are more likely to expose failures.

Experimental results show that our search-based approach finds 50% more failures of the DRL agent than state-of-the-art techniques.
Moreover, such failures are, on average, 78% more diverse; similarly, the behaviors of the DRL agent induced by failure configurations
are 74% more diverse.
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1 INTRODUCTION

Reinforcement Learning (RL) is a learning paradigm in which an agent interacts with the environment to complete a
given task. Learning is driven by a reward signal returned to the agent by the environment. The ultimate goal of an
agent is to learn a policy, i.e., a way to act in each environment state, that maximizes the amount of reward the agent
earns in its lifetime. The first RL algorithms were tabular [58] and could handle tasks with finite and small environment
states. With the advent of Deep Learning (DL), new algorithms (called Deep RL, or DRL for short) were proposed, which
could deal with complex environment states (e.g., images) [42].

DRL has recently been applied in many practical contexts. An example is personalization, i.e., the problem of
customizing a service to the needs of a particular user. For instance, Netflix uses DRL to choose which movie artwork
to show to a user in order to maximize engagement [28]. Similarly, Microsoft developed Personalizer [35], a service
developers can use for content recommendation and ad placement. Meta proposed Horizon [29, 30] (also called ReAgent),
an open source applied DRL platform, employed to deliver personalized notifications to their users, replacing the
previous system based on supervised learning.
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Another practical context in which the DRL paradigm is applied is continuous control. For instance, the automaker
Audi [71] showcased that their 1:8 scale car could, using DRL, search for a parking place in an area of 9 square meters
and park autonomously. Indeed, advancements in state representation learning and smooth exploration [36, 48, 68]
made it possible to train DRL agents directly on real robots. Moreover, in recent years, simulators have become more
realistic for a variety of tasks, besides achieving high parallelization thanks to GPU acceleration [26, 39]. In addition,
domain randomization and learned actuator dynamics are reducing the sim-to-real gap in robotics research [25, 41, 52].

Despite the growing prevalence of DRL agents in the real world, methodologies for testing such agents are still
largely unexplored. On the other hand, DRL agents present some peculiar characteristics. Indeed, DRL agents are
trained online since they interact with the environment to learn the optimal actions to perform the task. Specifically, in
order to increase generalization, DRL agents are usually trained on randomized environment configurations [15, 63] to
prevent agents from memorizing how to behave in a particular instance of the environment (e.g., a self-driving car
that drives only on a specific track). Therefore, during training the DRL agent is presented with different environment
configurations (e.g., different tracks) and it fails in some while it succeeds in others.

The current state-of-the-practice to test DRL agents is to run them on a set of environment configurations generated at
random [43, 63]. However, testing aDRL agent on randomly generated environment configurations has two shortcomings.
First, random generation [43] is unlikely to expose failures. As a consequence, their absence might lead the developer
to overestimate the capabilities of the DRL agent and to the deployment of an unsafe agent. Secondly, even finding
challenging environment configurations by random exploration is difficult and computationally expensive, since many
executions are needed and each execution requires running the DRL agent in a simulator or in the real world.

On the other hand, the interactions of the DRL agent with the environment during training provide clues about
the weaknesses of the DRL agent that results from the training process. The intuition is that training failures are
representative of critical environment configurations even for the DRL agent once it has been trained, and could be
used as guidance for the generation of new environment configurations that will likely challenge it.

Our approach, implemented in a tool called Indago, considers the interaction data produced during the DRL training
process as a labeled dataset to train a surrogate model — i.e., a classifier — on failure and non-failure (i.e., pass)
environment configurations. Then, Indago uses such surrogate model as a proxy for the execution of the DRL agent in
an environment with a newly generated configuration. Indago uses a search-based approach to maximize the failure
prediction for an environment configuration given by the surrogate model, instead of random search [63]. Indeed,
random search needs to generate a large set of environment configurations in order to be effective, which makes
it computationally expensive. On the other hand, Indago uses a mutation operator guided by saliency-based input
attribution [55] to identify mutations that have the maximum influence on the failure prediction. This way, Indago
turns a non-promising environment configuration into a critical one for the DRL agent under test, making the search
more efficient. Indago executes the DRL agent under test only on the most promising environment configurations, i.e.,
those with the highest failure predictions, hence saving computation time while maximizing failure exposures.

Our paper makes the following contributions:
1) Failure Search with Surrogate Models: in this paper we propose an approach that makes use of a surrogate model
of the environment to guide failure search while automatically generating environment configurations for a DRL agent.
In particular, we train a classifier on the training interaction data and use its output as a fitness function to maximize
the failure prediction of a given environment configuration. Moreover, we use the saliency method to efficiently identify
the most critical mutations for the given environment configurations.
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2) The Indago Tool: a practical tool, that implements the aforementioned approach, which we make publicly
available [7]. We also release three DRL agents trained on as many complex environments, as well as the required
infrastructure to test them.
3) Experimental Evaluation: we systematically compare different configurations of Indago with the state-of-the-art
sampling approach [63] that maximizes failure prediction by generating a large set of environment configurations. On
three complex case studies, i.e., a parking task [37], a walking humanoid [62] and a self-driving car [61], our experiments
show that, overall, Indago is able to find 50% more failure environment configurations than sampling. Moreover, we
introduce a clustering-based technique to measure the diversity of failure environment configurations triggered by
the competing approaches. Experimental results show that the failure environment configurations found by Indago
are 77% more diverse than those generated by sampling. Moreover, the behaviours of the DRL agent induced by such
environment configurations are 74% more diverse.

2 RELATEDWORK

Testing DRL agents is a rather unexplored area of research. Works that generate adversarial attacks [59] have been
proposed [23, 38], showing that such DRL agents can be vulnerable to adversarial attacks, similarly to DL agents (i.e.,
agents trained using supervised learning). However, our approach is substantially different since it is not focused on
perturbing the raw inputs of the DRL agent sensors but rather on generating configurations for the whole environment
the DRL agent runs into. The most similar work to ours is that by Uesato et al. [63], who proposed the sampling
approach we used as baseline in our experiments. Our results show that our search-based approach outperforms it both
in terms of number of failures triggered and their diversity in all case studies.

Biagiola et al. [8] proposed an approach to test the adaptation capabilities of DRL agents. In particular, the training
of a DRL agent is resumed with environment configurations that are different from those experienced by the DRL
agent during the previous training phase. Then, the proposed approach builds the adaptation frontier of the DRL
agent, separating the configurations in which the DRL agent under test is able to adapt from those where adaptation is
unsuccessful. Our approach is similar, in the sense that we also generate environment configurations. However, we are
interested in testing the DRL agent to find its weaknesses at testing time rather than its adaptation capabilities (i.e., we
do not resume training).

Also related to our work is that by Ruderman et al. [15], who studied how to train and test agents in procedurally
generated environments. In particular, they trained DRL agents on a set of procedurally generated mazes for a 3D
navigation task. Then, at testing time, they adopt a local search process to modify generated mazes guided by the
performance of the DRL agent. This process generates out-of-distribution mazes, i.e., environment configurations that
are not possible under the training distribution. In our work, we minimize the computational cost of the search by using
a surrogate model of the environment (i.e., a failure predictor), rather than executing the DRL agent under test in the
environment to measure its performance. Indeed, executing the DRL agent in the environment at each search iteration
becomes prohibitively expensive in environments more complex than mazes. Moreover, our approach does not generate
out-of-distribution environment configurations since all environment configurations generated at testing time are
subject to the same validity constraints of the environment configurations generated during the DRL training process.

More recently, Tappler et al. [60] proposed a search approach to assess the quality of DRL agents. Their approach
consists of searching for a reference trace that solves the RL task by sampling the environment. Such trace is built
using a depth-first search algorithm and it is composed of all the states not part of the backtracking branches of the
search. In particular, the search backtracks when it encounters an unsafe state, which is a state where the environment
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terminates the episode unsuccessfully. The states in the search graph preceding both an unsafe state and at least a
successor non-terminal state, are called boundary states. The prefixes of the reference trace that end up in a boundary
state are safety tests, since they are sequences of actions designed to bring the DRL agent under test into safety-critical
situations. Our approach is complementary, since our goal is to generate new environment configurations to test the
DRL agent, rather than evaluating it in the same environment configuration.

The literature in testing DL agents is quite rich and includes a multitude of works summarized in different surveys
on the topic [9, 24, 74]. Particularly relevant to our work are those that use search-based methods to generate test
inputs [1, 2, 6, 19, 49]. However, our work is different since it specifically targets DRL agents by exploiting the interaction
data a DRL agent produces during training, which is not possible in DL testing since DL agents are trained offline.

3 BACKGROUND ANDMOTIVATION

3.1 Reinforcement Learning

Fundamentals and Notations. Reinforcement Learning (RL) aims at learning a policy, which is a mapping from
states to actions, in order to optimize a numerical reward signal [58]. The agent that acts in the environment needs
to discover what actions result in a high reward thorough trial and error without the presence of a supervisor. The
main assumption of this learning paradigm is the so-called reward hypothesis [58], stating that training goals can be
expressed as the maximization of the cumulative reward.

More formally, at each timestep 𝑡 an RL agent receives a state 𝑠 as input from the environment, and it has to decide
the action 𝑎 to take. The executed action triggers a change of state and results in a reward value 𝑟 given to the agent by
the environment. Assuming that the task we formalize as an RL problem is episodic, i.e., it terminates once certain
conditions hold, the goal of an RL agent is to maximize the cumulative reward (i.e., often called return) of the episode.
In the general case, however, the RL objective is expressed as the maximization of the expected return since both the
environment in which the agent operates and its policy can be stochastic. The main reason for the stochastic nature of
a policy is due to a fundamental dilemma in RL, which is the exploration-exploitation dilemma. In fact, on the one hand,
the agent has to exploit the actions already known to be rewarding but, on the other hand, it has to explore unknown
actions that might result in even more reward.

The most important component of an RL agent is its policy 𝜋 : S → A, where A is a set of actions and S is a set
of states. The optimal policy 𝜋∗ tells the RL agent how to act in each state in order to maximize the expected return.
The optimal policy can be learned directly or can be extracted from value functions, namely the state-value function
𝑣𝜋 (𝑠) and the action-value function 𝑞𝜋 (𝑠, 𝑎). The former quantifies the value of the state 𝑠 , i.e., the expected return in
𝑠 , whereas the latter quantifies the value of the state-action pair (𝑠, 𝑎). The difference between the two functions is
that 𝑣𝜋 provides the value of a state 𝑠 by considering each possible action the agent can take in 𝑠 (in other words, the
average of the expected return in 𝑠 for all the actions), while 𝑞𝜋 considers the value of a state 𝑠 for a particular action 𝑎

. Both functions satisfy the Bellman equations [58] which are recursive consistency equations relating the values of
a state (or state-action pair) to the values of all the possible successor states (or state-action pairs). In particular, by
solving the Bellman equation for 𝑞𝜋 , we obtain 𝑞∗𝜋 from which we can extract 𝜋∗ by choosing in each state 𝑠 the action
𝑎 that maximizes 𝑞∗𝜋 .
Deep RL Algorithms. Before deep learning, the RL problem was addressed using dynamic programming and approxi-
mate tabular methods, such as monte carlo methods and temporal difference learning [58]. However, such methods are
not applicable to problems where the state dimensionality is high (e.g., images) and/or the action space is continuous

Manuscript submitted to ACM



Testing of Deep Reinforcement Learning Agents with Surrogate Models 5

Fig. 1. An initial configuration of the Parking environment in the HighwayEnv simulator [37]. The left-hand side (A) shows how the

configuration on the right-hand side (B) is rendered in the environment.

(e.g., the throttle in a self-driving car). The advent of deep learning made it possible to create Deep RL (DRL) algorithms
that work on such complex practical scenarios [42]. In particular Deep RL (DRL) algorithms use non-linear function
approximators, such as neural networks, to approximate high dimensional state and action spaces besides modeling the
dynamics of the environment. Therefore, instead of having exact representations of policies 𝑠 and value functions (𝑣𝜋
and 𝑞𝜋 ), neural networks can be used to approximate such quantities as well as to model the environment in which the
agent operates.

In our experiments we consider model-free DRL algorithms which do not use a model of the environment. There
exist different categories of model-free algorithms, based on how the RL problem is addressed. Specifically, policy
gradients algorithms, of which PPO is a notable example [54], directly solve the RL objective by representing the policy
explicitly (i.e., with a neural network). Value-based algorithms, on the other hand, extract the policy by solving the
Bellman equations, hence representing value functions explicitly. Examples of algorithms in such category are DQN and
its improvements [14, 21, 22, 42, 53, 70]. Hybrid methods represent both policy and value functions to incorporate, the
benefits of both policy gradients and value-based methods. SAC [20] and TQC [34] are the state-of-the-art algorithms
in this category. Belonging to a special category is the algorithm HER [3], which was proposed as a wrapper on top of
traditional DRL algorithms, to speed up learning in the context of goal-based tasks, e.g., parking a car from a starting
position to a target parking spot.

3.2 Motivating Example

Figure 1 shows the Parking environment, created by Leurent et al. [37], in a particular configuration where the DRL
agent needs to control the ego vehicle positioned at the center of the parking place. The left-hand side of the figure
(i.e., Figure 1.A) shows how the environment configuration on the right-hand side (i.e., Figure 1.B) is rendered in the
HighwayEnv simulator. In such environment configuration the ego vehicle is at the center of the parking place, i.e., its
position is (0.0, 0.0), and it has a heading of 0.0 (this parameter ranges in the interval [0.0, 1.0), representing a complete
rotation). In the parking place there are 20 parking spots, 5 cars parked at lanes 3, 5, 6, 8, 13 and the target parking spot
is at lane 20. The task of the DRL agent in this environment is to park the ego vehicle inside the target parking spot,
with the proper heading.

The action space of the DRL agent is composed of two actions, namely throttle and steering, both of which are
continuous. The DRL agent receives a negative reward at each timestep, proportional to the Euclidean distance of
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the ego vehicle from the target. Moreover, it receives a constant positive reward when the target is reached and a big
constant negative reward when it collides with a parked vehicle. The task is episodic with an episode finishing when
either the ego vehicle is parked in the right target spot with the right heading, or it collides with a parked vehicle, or
the timeout, measured in number of timesteps, expires.

We made the environment configurable, such that the parameters of the configuration (i.e., the initial conditions
at the beginning of each episode) can be changed programmatically. Correspondingly, an environment configuration
needs to be valid, i.e., it has to respect the constraints imposed by the environment. Such constraints are designed by
the developers of the environment to ensure that valid configurations are solvable by the DRL agent. In other words,
any agent would be able to solve the task when starting from a valid initial configuration, since the environment does
not contain any physically insurmountable obstacle or impediment.

The constraints defined for the Parking environment are the following: there cannot be a parked vehicle in the goal
lane (goal_lane ∉ pvehicles) since, otherwise, it would be impossible for the DRL agent to successfully park the
vehicle in the target spot. Moreover, goal_lane and pvehicles elements can vary in the interval [1, 20], i.e., the target
cannot be out of the parking place and there cannot be vehicles outside the parking spots. The head_ego parameter
can vary in the interval [0.0, 1.0). The parameters pos_ego.x and pos_ego.y can vary in the intervals [−10, 10] and
[−5, 5] respectively; in the former case the constraint ensures that the ego vehicle is not too far from the parking place
while the latter constraint avoids the ego vehicle to be too close to parked vehicles that would make any maneuver
impossible and, as a consequence, the task unsolvable.

4 APPROACH

The goal of our approach is to exploit the data resulting from the interaction between the DRL agent and the environment
during training in order to discover the weaknesses of the DRL agent at testing time. The interaction data we consider
is in the form of pairs (𝑒𝑖 , 𝑐𝑖 ) where 𝑒𝑖 is the environment configuration at episode 𝑖 during training and 𝑐𝑖 is a class
label, i.e., a boolean value indicating whether the DRL agent failed (𝑐𝑖 = 1) or not (𝑐𝑖 = 0) at the task in episode 𝑖 .

Our approach exploits the information on the failures that happened during training with the objective of generating
new critical test cases, i.e., environment configurations, in which the DRL agent under test (i.e., the DRL agent at the
end of training) is likely to fail. Since the execution of the DRL agent in the environment is computationally expensive
we avoid the execution of candidate new environment configurations that are not promising, i.e., that are unlikely to
lead to the exposure of a failure. The training interaction data can be leveraged to predict which, among the newly
generated environment configurations at testing time, are more likely to produce a failure and the DRL agent can be
executed only in environments with such promising configurations.

The current state-of-the-practice to test DRL agents is to evaluate them for a certain number of episodes, each with
an environment configuration generated at random [43, 63]. However, environment configurations generated at random
are unlikely to expose failures, although specific environment configurations may exist that are challenging for the
DRL agent under test. On the other hand, the DRL training process offers a valuable source of information exploitable
at testing time to efficiently expose failures of the DRL agent under test. The intuition is that the failures experienced
during training by weaker versions of the DRL agent under test are representative of critical environment configurations
of the DRL agent at the end of training, and can be used to guide the generation of new environment configurations
that can challenge it.

Figure 2 summarizes the overall approach to use interaction data produced during the DRL training process to test a
DRL agent. Our approach (i.e., Figure 2.B) takes as input a trained DRL agent (i.e., Figure 2.A) as well as the output of
Manuscript submitted to ACM
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Fig. 2. Overall approach for testing DRL agents. Our approach takes as input a trained DRL agent that produced the interaction

data (A) we use in the first step of our approach (B), i.e., Surrogate Model Training ❶. The second step of our approach is Failure
Search ❷, that selects the environment configuration in which the DRL agent is more likely to fail. In the evaluation (C), we execute

the selected environment configuration on the real environment to check whether the execution results in a failure or not.

the DRL training process (i.e., pairs of interaction data (𝑒𝑖 , 𝑐𝑖 )). The first step of our approach ❶ consists of training a
surrogate model of the environment on the set of interaction data. The surrogate model is used in the next step (i.e.,
failure search) to predict whether unseen environment configurations are likely to be failures. The failure search step ❷

uses the surrogate model to generate environment configurations in which the DRL agent is more likely to fail, by
acting as proxy for the execution of the DRL agent in the environment with such configurations. The output of step ❷

is the environment configuration that, considering the surrogate model a classifier, has the highest failure prediction
among the candidates (in Figure 2 the selected environment configuration is Env1 and it is encircled with a dashed line).
Finally, we evaluate the effectiveness of our approach by executing the DRL agent (i.e., Figure 2.C) in an environment
with such configuration, to check whether the execution results in an actual failure or not.

4.1 Surrogate Model Training

4.1.1 Classifier. The simplest implementation for the surrogate model is to train a classifier to predict whether,
given an environment configuration, the DRL agent under test will fail in it or not. The interaction dataset 𝐷 =

{(𝑒1, 𝑐1), . . . , (𝑒𝑁 , 𝑐𝑁 )} is used to train such classifier. In particular, we train a softmax classifier (i.e., a neural network)
to minimize the cross-entropy loss.

The classification problem to address in step ❶ presents some peculiar characteristics. In particular, the dataset 𝐷
might be unbalanced, i.e., the number of environment configurations in which the agent fails (𝑐 = 1) is much lower than
the number of environment configurations in which the agent does not fail (𝑐 = 0). The reason is that at the beginning
of the training process the DRL agent fails in most of the environment configurations while, as training goes on, the
DRL agent fails less and less until the training process converges and failures become rare. One of the strategies to train
a classifier in situations of class unbalance is to introduce a weight vector𝑊 in the loss function [12]. Such vector has
two components, i.e., one for each class, in order to scale the loss function for each 𝑖-th datapoint w.r.t. the class the
datapoint belongs to. The idea is to give more weight to the datapoints of the underrepresented class (i.e., the failure
class) such that the classifier can learn to classify datapoints of both classes equally. In the literature [13, 32], there are
various proposals for the computation of𝑊 . Our implementation choice is described in Section 5.2.

4.1.2 Regressor. When the number of failures in interaction dataset 𝐷 is too small to train a reasonable classifier,
another implementation choice for the surrogate model is to train a regressor. Contrary to the classifier, where it is
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straightforward to log when episodes are successful/unsuccessful during training, training a regressor requires defining
a function that computes a continuous value for each episode. Such value should be small when the agent is close to a
failure in a certain episode while it should be increasingly larger as long as the agent is far from a failure. The labels
𝑐1, . . . , 𝑐𝑁 in the interaction dataset 𝐷 are continuous values and the training objective is to minimize theMean Squared

Error between the prediction of the regressor and the ground-truth value in the dataset.
Similarly to the classifier, the interaction dataset 𝐷 can be unbalanced, with the majority of the data having a

continuous value which represents far-from-failure situations. Also in this case, we use weighted training to cope with
the unbalanced dataset (see Section 5.2).

In the following sections (i.e., Section 4.2 and Section 4.3), we describe our approach considering the classifier as
implementation choice for the surrogate model. Without loss of generality the same applies when the surrogate model
is implemented as a regressor.

4.2 Failure Prediction

The classifier is used to predict the class of any environment configuration that it is not present in the dataset 𝐷 of
interaction data. Therefore, it is a proxy for the actual execution of the DRL agent in the environment with a specific
configuration. More formally, it is a function 𝑓 : 𝐸 → [0, 1] ∈ R that takes as input an environment configuration 𝑒 ∈ 𝐸
and outputs a failure prediction.

Given the classifier, our objective is to generate an environment configuration that maximizes the failure prediction,
i.e., to solve 𝑒 = argmax𝑒 𝑓 (𝑒), and then execute the DRL agent in an environment with configuration 𝑒 . It should be
noticed that the real failure prediction function 𝑓 ∗ is only approximated by our classifier, i.e., 𝑓 ≈ 𝑓 ∗. The reason for the
approximation is two-fold: (1) the dataset 𝐷 of interaction data might not be large and diverse enough to best represent
all real-world conditions; (2) during training the DRL agent performs non-deterministic actions to better explore the
state space. As a consequence, a failure that happens during training might be due to some non-deterministic actions
carried out in a specific episode. Despite the mismatch between 𝑓 and 𝑓 ∗, failure search (see Figure 2) can still effectively
use the classifier that implements 𝑓 , provided its feedback on the failure prediction of a new environment configuration
can be reliably used to converge toward inputs that challenge the DRL agent. In fact, failure search does not require
perfect guidance toward optimal inputs, it just needs a direction where the search should be directed [31].

4.3 Search-Based Failure Search with Surrogate Models

For the failure search step ❷ we use the output of the classifier as a fitness function to be optimized by a search-based
algorithm. In particular, we consider two search-based algorithms, i.e., Hill Climbing and Genetic Algorithm, to generate
the environment configurations where to execute the DRL agent.

Hill climbing is a local search algorithm that, starting from an arbitrary candidate solution to the problem (i.e., an
environment configuration), incrementally changes such solution to create new ones. If a better solution is found
the process is repeated until the current solution can no longer be improved or a timeout expires. Genetic algorithm
is a population-based algorithm that combines global and local search to avoid getting stuck in local optima while
improving existing solutions.

Algorithm 1 shows the pseudocode of the hill climbing algorithm for the generation of environment configurations.
It takes as input the classifier 𝑓 , the size of the neighborhood 𝑁𝑆 of the current solution 𝑒 and an optional environment
configuration in which the DRL agent failed during training 𝑒𝑓 . If such environment configuration is not provided,
the initial solution is generated at random (see if statement at Lines 2–6). The for loop at Lines 13–19 computes, at
Manuscript submitted to ACM
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Algorithm 1: Hill climbing algorithm for the generation of environment configurations
Input : 𝑓 , classifier;

𝑁𝑆 , neighborhood size;
𝑒𝑓 , environment configuration in which the DRL agent failed during training.

Output :𝑒 , environment configuration to execute the DRL agent on.
1 /* Set the seed environment configuration */
2 if 𝑒𝑓 = null then

3 𝑒 ← generateRndEnvConfig()
4 else

5 𝑒 ← 𝑒𝑓

6 end

7 /* Main loop that mutates an environment configuration 𝑒 guided by the classifier 𝑓 until the timeout expires */
8 repeat

9 /* Assign the initial set of environment configurations and associated failure predictions */
10 𝐸← {𝑒}
11 𝐹𝑃 ← {𝑓 (𝑒)}
12 /* Generate the neighborhood of the current best environment configuration */
13 for each 𝑖 ∈ 𝑁𝑆 do

14 /* Mutate the current best environment configuration ensuring its validity */
15 𝑒𝑖 ← mutateEnvConfig(𝑒)
16 𝑓 𝑝𝑖 ← 𝑓 (𝑒𝑖 )
17 𝐸← 𝐸 ∪ {𝑒𝑖 }
18 𝐹𝑃 ← 𝐹𝑃 ∪ {𝑓 𝑝𝑖 }
19 end

20 /* Assign the current best environment configuration based on the results of the search */
21 𝑗 ← argmax 𝐹𝑃
22 𝑒 ← 𝐸 [ 𝑗]
23 until ¬ timeout()

24 𝑒 ← 𝑒

25 return 𝑒

each 𝑖-th iteration, the neighbors of the current solution 𝑒 . Indeed, function mutateEnvConfig at Line 15 takes care
of mutating the current solution 𝑒 and ensuring the validity of the result, i.e., the mutation is applied to 𝑒 only if the
new environment configuration 𝑒𝑖 is valid. The mutated solution 𝑒𝑖 is then evaluated by the classifier to compute its
failure prediction at Line 16. At Lines 17–18 each mutation of the current solution, i.e., 𝑒𝑖 , is stored as well as its failure
prediction 𝑓 𝑝𝑖 . At the end of the loop, the index 𝑗 of the neighboring solution with the maximum failure prediction is
computed (Line 21) which is used to retrieve the corresponding neighboring solution 𝑒 (Line 22). The outermost loop
at Lines 8–23 is repeated until there is search budget (i.e., the timeout) is not expired. Finally, the best solution 𝑒 is
assigned to 𝑒 and returned.

The Genetic Algorithm shown in Algorithm 2 takes as input the classifier 𝑓 , the population size 𝑃𝑆 , the crossover
rate 𝑐𝑟 and an optional set of environment configurations in which the DRL agent failed during training 𝐸𝑓 . Such set
can be used to fill the initial population when it is available; otherwise the initial population is generated randomly
(Line 2). The computeFitness procedure at Line 3 computes the fitness value for each solution in the population, which
is its failure prediction as computed by the classifier 𝑓 . At Line 8 a new population with the best solutions from the
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Algorithm 2: Genetic algorithm for the generation of environment configurations
Input : 𝑓 , classifier;

𝑃𝑆 , population size;
𝑐𝑟 , crossover rate;
𝐸𝑓 , set of environment configurations in which the DRL agent failed during training/

Output :𝑒 , environment configuration to execute the agent on.
1 /* Generate the initial population of environment configurations and compute the corresponding fitness */
2 population← generatePopulation(𝑃𝑆 , 𝐸𝑓 )
3 computeFitness(population, 𝑓 )
4 currentIteration← 0
5 /* Main loop that changes the population guided by the classifier 𝑓 until the timeout expires */
6 repeat

7 /* Build the new population by extracting a certain percentage of the best environment configurations */
8 newPop← elitism(population)
9 /* Fill the rest of the population by evolving the environment configurations */

10 while | newPop | < 𝑃𝑆 do

11 /* Select the best environment configurations according to their fitness */
12 𝑝𝑒1← selection(population)
13 𝑝𝑒2← selection(population)
14 /* Copy the environment configurations (offspring) to avoid changing the original ones (parents) */
15 𝑜𝑒1← copy(𝑝𝑒1)
16 𝑜𝑒2← copy(𝑝𝑒1)
17 /* Crossover two environment configurations with a certain probability 𝑐𝑟 , ensuring their validity */
18 if getRandomFloat() < 𝑐𝑟 then

19 𝑜𝑒1, 𝑜𝑒2← crossover(𝑜𝑒1, 𝑜𝑒2)
20 end

21 /* Mutate the offsprings ensuring their validity */
22 𝑜𝑒1← mutateEnvConfig(𝑜𝑒1)
23 𝑜𝑒2← mutateEnvConfig(𝑜𝑒2)
24 /* Add the best environment configurations to the population according to their fitness */
25 addBestIndividuals(newPop, 𝑝𝑒1, 𝑝𝑒2, 𝑜𝑒1, 𝑜𝑒2)
26 end

27 /* Compute the fitness of environment configurations in the new population */
28 population← newPop

29 computeFitness(population, 𝑓 )
30 /* Replace the worst environment configurations in the population to avoid stagnation */
31 reseedPopulation(population, currentIteration, 𝐸𝑓 )
32 currentIteration← currentIteration +1
33 until ¬ timeout()

34 /* Extract the environment configuration with the best fitness */
35 𝑒 ← getIndividualWithBestFitness(population, 𝑓 )
36 return 𝑒

current population is instantiated (elitism). The while loop at Lines 10–26 is the evolution part of the algorithm which
terminates when the size of the new population reaches the target population size 𝑃𝑆 . At the beginning of the loop two
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solutions are selected based on their fitness (Lines 12–13) and are crossed over according to the crossover probability
𝑐𝑟 (Lines 18–20); the solutions 𝑜𝑒1 and 𝑜𝑒2 are modified only if the crossover results are two valid configurations.
Afterward, the solutions are mutated (Lines 22–23, also in this case 𝑜𝑒1 and 𝑜𝑒2 are modified only if the changes result
in valid configurations) and finally the best solutions (either the parents 𝑝𝑒1, 𝑝𝑒2 or the offsprings 𝑜𝑒1, 𝑜𝑒2) are stored
in the new population (Line 25). At the end of the while loop the current population is assigned the new population
and the fitness value of each solution is computed (Lines 28–29). The reseedPopulation procedure at Line 31 takes
care of avoiding stagnation by reseeding the population according to the currentIteration variable. If the set of failure
environment configurations 𝐸𝑓 is available, the solutions with the worst fitness in the current population are replaced
by randomly sampled solutions from the set 𝐸𝑓 ; otherwise the worst solutions are replaced by randomly generated
individuals. The main loop (Lines 6–33) terminates when the search budget expires. Finally, the solution with the best
fitness 𝑒 is taken at Line 35 and returned.

Both search algorithms support seeding from existing environment configurations that caused a failure of the agent
during training. In particular, let us suppose that the parameter 𝑒𝑓 is not null in Algorithm 1 (similarly, 𝐸𝑓 is not empty in
Algorithm 2). The DRL agent may not fail in such environment configurations because it may have encountered similar
environment configurations later during training, and it might have adapted to them. However, despite adaptation, the
DRL agent might not perform well and a proper change in such environment configuration has the potential to trigger a
failure. For example, let us suppose that the environment configuration 𝑒𝑓 = [20, 0.0, {3, 5, 6, 8, 13, 19}, (0.0, 0.0)] causes
a failure of the DRL agent during training in the Parking environment (it is the same environment configuration shown
in Figure 1, except that there is a parked vehicle beside the target spot), but the DRL agent does not fail in 𝑒𝑓 at testing
time. However, changing the heading of the ego vehicle from 0.0 to 0.5, i.e., the opposite direction w.r.t. the target spot,
might result in the DRL agent not being able to turn the vehicle and park it with the right heading, since the mutation
has succeeded in making the environment more challenging, eventually exposing a failure.

4.3.1 Mutation Function. Knowing what to change in the environment configuration is important for finding failures.
The function that makes this decision is the mutateEnvConfig function (Line 13 in Algorithm 1 and Lines 14–15 in
Algorithm 2). We propose two implementations of the mutateEnvConfig function: the first one randomly changes a
parameter of the given environment configuration, choosing among all parameters with equal probability. The second
one only changes the parameter of an environment configuration that contributes the most to the failure prediction.
The idea is that some parameters are more critical than others when considering how they affect failure prediction.
Hence, changing them is more beneficial for generating failure environment configurations than changing the other
parameters. In particular, we propose to use the saliency method to compute input attribution [55], i.e., to determine how
much an input influences a prediction made by a neural network (our classifier). Given an environment configuration
and the classifier, the saliency method computes the input gradient, i.e., the partial derivatives over all the individual
parameters of the environment configuration. The absolute value of each gradient indicates which input parameter is
more critical to the failure prediction and its sign indicates the direction (i.e., positive or negative) of change. In our
saliency-guided implementation of the mutateEnvConfig function we take the output computed by saliency and
change the parameter in the environment configuration whose corresponding gradient is the highest one; the direction
of change, either positive or negative, depends on the sign of the gradient.

For instance, let us consider the environment configuration: 𝑒 = [20, 0.0, {3, 5, 6, 8, 13, 19}, (0.0, 0.0)], i.e., an environ-
ment configuration of the Parking environment. The input attribution for this environment configuration is an array of
the same size as the input, as it contains the partial derivatives over each input. Let us suppose that the highest value
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in the array is in second position, i.e., the position corresponding to the parameter head_ego, and that such value is
positive. This means that the parameter head_ego is the most critical one affecting the failure prediction of the classifier
and that changing it in the positive direction, i.e., increasing it, will also increase the failure prediction for the resulting
environment configuration.

4.3.2 Crossover Function. The crossover function is specific to the genetic algorithm (Line 12 in Algorithm 2). We
propose a single-point crossover implementation where, given two environment configurations, the cut point is
determined randomly; then the elements in the two configurations before and after the cut point are swapped. We
chose this simple implementation for crossover because it can be applied to configurations of any case study with little
to no modifications. Custom implementations that take into account the specific features of each case study remain
possible in our implementation.

For instance, let us suppose that 𝑒1 = [20, 0.0, {3, 5, 6, 8, 13, 19}, (0.0, 0.0)] and 𝑒2 = [15, 0.5, {1, 3, 9}, (−1.0, 7.5)]
are two Parking environment configurations. The cut point is computed based on the number of parameters in the
environment configuration, which in the case of Parking is equal to four (i.e., goal_lane, head_ego, pvehicles and
pos_ego). Let us suppose that the cut point is at first position. The two environment configurations after crossover will
be as follows: 𝑐𝑒1 = [20, 0.5, {1, 3, 9}, (−1.0, 7.5)] and 𝑐𝑒2 = [15, 0.0, {3, 5, 6, 8, 13, 19}, (0.0, 0.0)].

4.4 Implementation

We implemented our approach in a Python tool called Indago (Latin for “search”) which is publicly available [7].
The DRL agents are implemented by the stable-baselines [47] library and we use Pytorch [44] and scikit-learn [45] to
implement the training and inference of the classifier. The saliency method is implemented by the captum library [33].

5 EMPIRICAL EVALUATION

We consider the following research questions:
RQ1 (Effectiveness):What is the effectiveness of the proposed approach? Can it generate failure environment configurations

for the DRL agent under test?

RQ2 (Comparison): How does Indago compare against the random baseline? How does it compare against the state-of-

the-art sampling approach?

RQ3 (Hyperparameters):What is the impact of the key hyperparameters of Indago?

RQ4 (Ineffective Failure Seeds): How does the effectiveness of Indago change when failure seeds are ineffective at testing

time?

RQ1 evaluates the effectiveness of Indago, i.e., its capability to generate failure environment configurations for the
DRL agent under test. This research question acts as a sanity check to make sure that our approach is able to generate
failures that we can analyze and study in the next research question.

RQ2 compares Indago with the random baseline and the state-of-the-art sampling approach [63], both w.r.t. the
number of generated failure environment configurations and their diversity.

RQ3 investigates the key hyperparameters of Indago both w.r.t. the number of failure environment configurations
that are generated by each hyperparameter setting and their diversity. We first analyze the choice of the search algorithm,
i.e., hill climbing vs genetic algorithm. Second, since our approach can work both with and without the provisioning of
failure seeds (𝑒𝑓 and 𝐸𝑓 are optional parameters in Algorithm 1 and Algorithm 2, respectively), we want to investigate
which of the two seed strategies is more convenient to use. Third, when mutating the environment configurations
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Indago can either choose them randomly or it can focus on those that have the highest influence on the failure
prediction, as determined by the saliency method. Hence, we want to evaluate the impact of the mutation strategy
when using Indago.

In RQ4 we study how Indago performs when failure seeds, i.e., failure configurations causing a failure of the agent
during training, are not effective for the DRL agent at testing time. In this research question we want to study whether
Indago is still effective at finding failures when there is no guidance from the failure seeds.

5.1 Case Studies

Parking. We already introduced the first environment, i.e., Parking [37], in Section 3, where we also describe the
representation of the environment configuration (see Figure 1). Such environment has been used in several studies,
especially to evaluate the capabilities of DRL agents [10, 11, 16, 17, 57, 72, 76].

The encoding adopted to train a classifier for failure prediction consists of an array of 24 elements where the first
two values are for the two single-value parameters of the environment configuration (i.e., goal_lane and head_ego),
followed by 20 values corresponding to the one-hot encoding of the pvehicles parameter (i.e., each position has a
value of 1 only when there is a vehicle in the respective spot; a value of 0 otherwise) and finally the two values of the
pos_ego parameter.

Regarding the mutation operators, the goal_lane parameter value is increased or decreased, with equal probability,
and the change amount is an integer in the interval [1, 20]. The heading_ego parameter value is increased or decreased,
with equal probability, and the change amount is a random floating point number in the interval [0, 1). The coordinates
of the pos_ego parameter tuple are increased or decreased, with equal probability, by a random float in the interval
[0, 1]. For what concerns the pvehicles parameter, with equal probability parked cars in the pvehicles set are
added/removed or the parked car occupancy indexes are mutated. In the former case a certain number of indices is
selected at random for adding or removing parked cars with equal probability. In the latter case a certain number of
parked car indices is selected at random to be mutated, i.e., increased or decreased by a random integer in the interval
[1, 20]. Moreover, the crossover operator considers the parameters of the Parking environment configurations as unique
features. An example of crossover for the Parking environment is in Section 4.3.2.
Humanoid. The second environment we consider is Humanoid, built using the Mujoco simulator [62]. Mujoco is a
very popular simulator in the DRL community, especially to benchmark DRL algorithms in continuous control tasks.
The 3D physics simulator has different pre-built environments, with Humanoid being one of the most challenging
environments for DRL algorithms [69].

In Humanoid the DRL agent needs to control a bipedal robot in a 3D space and make it walk on a smooth surface.
Each environment configuration is composed of two arrays, i.e., joints_pos and joints_vel. The former has size 24
and consists of the positions and rotations of the joints of the robot while the latter has size 23 and consists of the linear
and angular velocities of those joints (more information are available in the Gym Library wiki [18]). All the angles are
in radians, represented as floating point numbers. Figure 3 shows two configurations of the Humanoid environment;
we can see that the initial joints positions can be altered, forming different initial configurations for the Humanoid
robot (Figure 3.A and Figure 3.B show the rendering of two different environment configurations, while Figure 3.C
shows how an environment configuration is encoded.).

The state space of the DRL agent is an array of size 376, composed of joint positions, angles and relative velocities,
plus other components as center of mass inertia and velocity. The action space is composed of 17 elements that are the
degrees of freedom of the robot, i.e., the actuated joints of the robot. The reward function encourages the DRL agent to
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Fig. 3. Two initial configurations (A and B) of the Humanoid environment in the Mujoco simulator [62]. The right-hand side (C),

shows an example of environment configuration.

walk as fast as possible plus a bonus for each timestep. An episode terminates when the abdomen 𝑦 coordinate of the
robot goes out of the range (1, 2), which indicates that the robot has fallen down, or when a timeout expires (we set
such timeout to 300 timesteps). When the robot falls we deem the episode unsuccessful; on the other hand, when the
timeout expires we consider the episode successful. We changed the environment interface to be configurable such
that the parameters joints_pos and joints_vel can be set programmatically at the beginning of each episode. The
original implementation initializes joints_pos to [0, 0, 1.4, 1, 0, . . . , 0] and joints_vel to all zeros; then, to generate a
new environment configuration, each value in both arrays can be changed by adding or subtracting a small quantity
𝑚 (which is set to 0.03). We followed the original implementation to define validity, i.e., we consider an environment
configuration to be valid only if the values of its parameters, i.e., joints_pos and joints_vel, are within the interval
[−𝑚,𝑚] w.r.t. the initial values of such parameters. For instance, a valid environment configuration can have the third
value of its joints_pos array within the interval [1.4 −𝑚, 1.4 +𝑚], since that value is initialized to 1.4.

The encoding we adopt as input to the classifier is the concatenation of the two arrays that define the environment
configuration, i.e., joints_pos and joints_vel. Regarding the mutation operators, they are defined in the same way
for both parameters, i.e., once an index of either joints_pos or joints_vel is chosen at random, the value at that index
is either decreased or increased, with equal probability, by a random floating point quantity in the interval [−𝑚,𝑚].
Moreover, the crossover operator is based on the parameters of the Humanoid environment, as in Parking. In Humanoid
there are only two parameters, i.e., joints_pos and joints_vel; therefore, during crossover, the entire joints_pos
and joints_vel vectors are swapped between two different environment configurations.
Driving. The third environment we consider is Driving, built using the DonkeyCar simulator [61]. This platform
has been used in previous works to train and test self-driving car software both based on supervised learning and
reinforcement learning [66, 67, 75, 77].

In this environment the DRL agent controls a car which drives along a track. The configuration determines the
shape of the track in which the car drives (see Figure 4.A). The track is represented as a list of 12 pairs, where each pair
consists of two elements, i.e., a command and a value (see Figure 4.C). The possible commands are S which indicates
a straight line, R which indicates a right curve, L which indicates a left curve and DY which signals the beginning of
a curve. The value associated to each command represents the number of road units, except for the DY command,
where the associated value represents the individual angle of rotation for each road unit. For example, the sequence of
commands [(S,2), (DY,15.2), (L,3)] (i.e., the first curve of the track represented by the environment configuration
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Fig. 4. An initial configuration of the Driving environment in the DonkeyCar simulator [61]. The left-hand side shows both the plot (A)

of the environment configuration on the right-hand side (C), and how the configuration is rendered in the DonkeyCar simulator (B).

in Figure 4.B) instructs the road engine to build a straight road for two road units followed by a left curve which is
three road units long, for a total of 45.6 degrees (i.e., 3 × 15.2).

The state space of the DRL agent is an RGB image of size (160, 120) taken by the front camera of the car, while the
action space is two-dimensional, i.e., steering angle and throttle. The DRL agent receives a small negative reward per
timestep plus a positive reward every time it crosses a waypoint in the track, minus a penalty related to the cross track
error, i.e., the distance between the center of mass of the car and the center of the track. The first component of the
reward encourages the DRL agent to go as fast as possible, the second privileges the progress on the track and the third
forces the DRL agent to drive as close to the center of the track as possible. Moreover, the DRL agent receives a large
negative reward when it goes off-road. In such cases the episode terminates unsuccessfully, whereas when the DRL
agent crosses the end line of the track, the episode is deemed successful.

We modified the DonkeyCar simulator to make it configurable, such that at the beginning of each episode the track
passed as input can be instantiated in the simulator. Regarding validity, there are a number of constraints that need to be
respected in order for the track to be valid. First, each track should start and end with an S command. Moreover, after a DY
command there must be either an L or R command. Afterward, the track must not contain loops (i.e., self-intersections),
it must not have very sharp turns (i.e., with a rotation angle > 170°) and it must have at least 3 curves, one of which
must be with a rotation angle of at least 120°. The last two constraints ensures that the generated tracks are non-trivial.

The encoding we adopt as input to the classifier is the concatenation of two arrays, i.e., the array of all commands,
where each command is given a unique integer identifier, and the array of all values. Regarding the mutation operators,
we define one for commands and one for values and, when analyzing a command-value pair, we either change the
command or the value with equal probability. The change command operator can only change an L command to an R

command or vice-versa. The change value operator first analyzes the associated command and, if it is a DY command, it
either increases or decreases, with equal probability, the current value by a random floating point number in the interval
[0, 50]. Otherwise, it increases or decreases, with equal probability, the current value by a random integer number in the
interval [1, 20]. Moreover, the crossover operator considers the Driving configuration as a list of command-value pairs.
The cut point is a value in the interval [1, 12] such that after crossover the resulting Driving environment configurations
have command-value pairs coming from both parent environment configurations. We customized the crossover operator
for this environment by retrying crossover a certain number of times, until either both resulting configurations are
valid or the maximum counter is reached.
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Table 1. Case studies training metrics
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Parking HER [3] + TQC [34] 200k 8789 206 80k 3159 17
Humanoid TQC [34] 1500k 6965 270 300k 1141 318

Driving SAC [20] 1000k 11274 194 500k 1445 13

5.2 Experimental Setup

5.2.1 Procedure. We trained the DRL agents in each environment using the hyperparameters recommended by Raffin
et al. [46, 47]. For RQ4 we simplified the training environments in order to make the resulting agents more robust
against training failure configurations. In particular, we removed the parked vehicles in Parking, we decreased the
variation of the two parameter vectors determining the initial configurations in Humanoid (i.e., we set𝑚 to 0.01 instead
of 0.03, see the respective paragraph in Section 5.1), and we constrained the number of curves in Driving to be ≥ 2
instead of ≥ 3, of which the hardest one must be ≤ 130° instead of ≤ 170°. Table 1 shows in Column 1 the algorithms
we used for each environment. Column 2 (resp. Column 5 for RQ4) shows the number of training timesteps which
corresponds to the number of episodes shown in Column 3 (resp. Column 6 for RQ4). In each setting we trained each
DRL agent until convergence, i.e., until the success rate in the last 100 episodes was 100%. Column 4 and Column 7
show the number of training failures in the two settings after filtering the initial 30% of the data. We can observe that,
in the first setting (i.e., Column 4), the number of failures remaining after filtering is comparable and close to 200 on
average. In the second setting (i.e., Column 7), the number of failures is much lower in Parking and Driving (i.e., ≈20 vs
≈200), while in Humanoid the DRL agent experiences a drop in performance after the initial training phase in both
settings, making the number of training failures after filtering comparable.

Given the low number of failures in the second setting, we resort to a regressor-based surrogate model. Indeed, a
regressor, as opposed to a classifier, can learn from near-failure interactions during training, i.e., where the agent got
close to failing but ultimately such interactions were successful. For the Parking environment we considered the length
of the episode as continuous value. In Parking, an episode finishes unsuccessfully when the agent is not able to park
the vehicle in a certain amount of time. A long episode indicates a challenging environment configuration where the
agent struggled to complete the parking task.

In Humanoid, we consider the abdomen latitudinal coordinate of the robot, which determines when the robot has
fallen down; for a given episode we consider the minimum distance between the current coordinate and the respective
lower and upper bounds. In Driving, we use the maximum cross track error in an episode as a continuous value for the
regressor.

In all case studies, we normalize the continuous values between 0 and 1, where 0 indicates a failure. When using
the regressor-based surrogate model for failure search, our objective is to generate environment configurations that
minimize the prediction of the regressor.
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Classifier Training. To compensate for the unbalanced dataset when training the failure classifier, we compute a
weight vector𝑊 as follows: given 𝑁 datapoints, the array of class targets 𝑌 , with |𝐶 | being the number of classes:

𝑊 =
𝑁

|𝐶 | · hist(𝑌 ) (1)

where hist(𝑌) is a function that outputs an array of size |𝐶 | indicating the number of datapoints for each class. Such
formula, gives a higher weight to the underrepresented classes [32].

We chose a multi-layer perceptron as the classifier architecture. The reason is twofold: first, the size of the available
training data is small (at most 10k examples for both failure and non-failure classes, see Table 1). Secondly, our
environment configurations are small size one-dimensional feature vectors (24 for Parking, 47 for Humanoid and 24 for
Driving). Furthermore, since the output of the classifier is used as a fitness function during testing, adopting complex
models to process simple inputs would be inefficient and prone to overfitting.

When training the failure predictor, there are two important hyperparameters to consider. The first one is the amount
of initial interaction data to filter out. Indeed, at the beginning of training the agent carries out random actions and, as
a consequence, it often fails regardless of the environment configuration. This means that the earliest failures are not
useful to predict the failures of the DRL agent under test. The other hyperparameter that depends on the case study is
the number of hidden layers of the multi-layer perceptron.

In our experiments we considered nine levels of filtering (i.e., 5, 10–80), where, for instance, 5% filtering means that
the first 5% of the environment configurations are not considered for training the classifier. Moreover, we chose four
different number of hidden layers, i.e., from 1 to 4, where each hidden layer is composed of 32 units followed by a
batch normalization layer [27] and a dropout layer [56] with probability of dropout of 0.5 (except when the network
has only one hidden layer). For each pair filter-layers we trained the classifier ten times (with all the other training
hyperparameters, e.g., learning rate, fixed), every time with a different random seed. We used a validation set formed
using 20% of the data to save the best model during training which we evaluated on a held-out test set. We built such
test set by choosing a filtering level of 5% for each case study and by selecting 10% of the data at random. During
hyperparameter tuning we measured precision and recall of the classifier considering the failure class as the positive
class. We deem precision more important than recall since in order to guide failure search it is more important for
the classifier to be as precise as possible (i.e., few false positives) even at the cost of missing some failures (i.e., false
negatives). We chose the best classifier model by looking at the results of the ten training runs for each filter-layers pair,
and we selected the model with the highest precision and with a recall of at least 10%, in order not to miss too many
failures.

The best classifier for Parking has four hidden layers and a filtering level of 50%, reaching a precision of 24% and a
recall of 17% on the held-out test set. The best classifier for Humanoid has one hidden layer and a filtering level of 10%,
reaching a precision of 62% and a recall of 48% on the held-out test set. Finally, the best classifier for Driving has four
hidden layers and a filtering level of 30%, reaching a precision of 25% and a recall of 12% on the held-out test set. Such
classifiers are used in the failure search step for each case study.
Regressor Training. In order to deal with the unbalanced regression problem we use the Label Distribution Smoothing
(LDS) approach proposed by Yuzhe et al. [73]. The approach starts by convolving a symmetric kernel with the empirical
distribution of continuous values (e.g., obtained by binning the continuous values). The output is a smoothed version
of the distribution that we use in the loss function to proportionally weight each continuous value based on their
frequency.
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The best regressor for Parking has two hidden layers and a filtering level of 10%; the best regressor for Humanoid
has two hidden layers and a filtering level of 30%; the best regressor for Driving has two hidden layers and a filtering
level of 5%. Such regressors are used in the failure search step for each case study when training failures are ineffective
at testing time and correspondingly a regressor is potentially a better surrogate model than a classifier.
Baselines. We compared Indago with two approaches. The first approach is the random baseline, where environment
configurations are generated at random. Such baseline is useful to understand whether the proposed approach is able
to outperform the state-of-the-practice in testing DRL agents [43, 63]. The second approach is the state-of-the-art
sampling approach by Uesato et al. [63]. This simple approach consists of generating a large initial set of𝑇 environment
configurations at random and choosing the one that, according to the classifier 𝑓 , has the highest failure prediction.
Indago. We considered hill climbing and genetic algorithm each with four different settings. In the first one, the seed
environment configurations to evolve are generated at random (hcrnd and garnd). In the second, we used hill climbing
and genetic algorithm to evolve failure environment configurations (hcfail and gafail). Regarding the settings with the
failure seeds, we always filtered out the initial 30% of the environment configurations, in order not to include failures
that are likely not representative of the failures of the DRL agent under test. Furthermore, we considered hill climbing
and genetic algorithm guided by saliency, evolving both random (hcsal+rnd and gasal+rnd) and failure (hcsal+fail and
gasal+fail) environment configurations. For Indago and the sampling approach we considered a fixed search budget 𝐵
per environment configuration. In particular, we chose 𝐵 = 5 seconds for Parking and Humanoid, while 𝐵 = 30 seconds
for Driving, as from preliminary experiments we observed that such budget was enough to reach fitness convergence
for all approaches.

During failure search, we generated𝑇 = 100 environment configurations for each case study and each approach, and
we evaluated the respective DRL agent in each environment configuration. Since Humanoid and Driving simulators are
non-deterministic we evaluated the respective DRL agents in each environment configuration ten times. Moreover, we
repeated the experiments ten times for each failure search approach in order to cope with the intrinsic randomness
of the approaches. Overall, we have 3 case studies, 10 techniques (8 settings of Indago, including hill climbing vs
genetic algorithm, random vs failure seed, two mutation strategies (i.e., random and saliency), plus the random and
the sampling approaches), each generating 100 environment configurations (each repeated 10 times in Humanoid and
Driving). Finally, each technique is executed 10 times for a total of 210k simulations.
Hardware Resources. Due to the high number of simulations, we resorted to the university cluster with 20 CPU
nodes, and parallelized the execution of the experiments to obtain the results in a reasonable amount of time. We did
not make use of GPU nodes in the experiments, as DRL models are typically small and simulators could be executed
headless on CPUs.

5.2.2 Metrics. In order to assess the effectiveness of our failure search approach (RQ1) and to compare it with the
baselines (RQ2), we measured the number of failures each approach triggers given the number of environment
configurations to generate (i.e., 𝑇 ) and the fixed search budget 𝐵 per environment configuration. In non-deterministic
environments, as Humanoid and Driving, we measured the failure probability of each environment configuration out
of ten runs and we considered an environment configuration to cause a failure if its failure probability is > 0.5. As
each failure search approach is executed ten times, we determined whether there is a statistical difference between
the failures triggered by each pair of failure search approaches (including the 8 settings of Indago) by computing the
Mann-Whitney U Test [4, 40]. To measure the effect size, we computed the Vargha Delaney metric 𝐴12 [65].
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To compare the competing approaches (RQ2) we also considered two types of diversity regarding the failures
generated by each approach, namely input and output diversity. For input diversity, we first clustered all the environment
configurations that caused a failure, across all considered failure search techniques, obtaining a single partition of all
such failing environment configurations. Similarly, for output diversity, we clustered the trajectories (i.e., positions over
time) of the DRL agents on the failure inducing environment configurations. In Parking and Driving we considered the
trajectories of the vehicle while performing the task, i.e., parking the vehicle in the former case and driving along the
track in the latter. In Humanoid, we considered the trajectory of the height of the robot, which determines whether the
robot falls or not. Since trajectories can have different lengths, we extended them with zero-padding to the maximum
observed length. For both input and output diversity we used the k-means clustering algorithm [5] and we determined
the optimal number of clusters 𝑘∗ by performing silhouette analysis [51], optimizing the balance between density and
separation of the clusters. In our experiments we varied the number of clusters 𝑘 between two and the number of inputs
(i.e., environment configurations or trajectories) to be clustered, and computed the silhouette score for each candidate.
We increased 𝑘∗ to a higher value only if the new silhouette was at least 20% greater than the best silhouette score
found so far, in order to filter out random fluctuations of the silhouette score.

After applying clustering, we computed two diversity metrics for each failure search approach, namely coverage and
entropy. Given a failure search approach 𝐴 and the optimal number of clusters 𝑘∗, the coverage of the clusters for the
approach 𝐴 is defined as:

𝐶𝐴 =

∑𝑘∗
𝑖=1 𝛾𝐴 (𝑖)
𝑘∗

(2)

where the function 𝛾𝐴 (𝑖) : Z+ → 0|1 determines whether a certain cluster labeled by 𝑖 is covered by the failure search
approach 𝐴, i.e., whether at least one failure generated by the approach 𝐴 belongs to the cluster with label 𝑖 .

The second metric, entropy, measures how uniformly the different failures are distributed across the clusters. Given
the number of failures triggered by the failure search approach 𝐴 in the 𝑖-th cluster, 𝐹𝐴 (𝑖), the probability of finding a
failure generated by the approach 𝐴 in cluster 𝑖 is given by:

[𝐴𝑖 =
𝐹𝐴 (𝑖)∑
𝑖 𝐹𝐴 (𝑖)

(3)

and entropy is defined as:

𝐻𝐴 =

𝑘∗∑︁
𝑖=1

[𝐴𝑖 · log2 ([
𝐴
𝑖 ) (4)

In particular, entropy is zero when all failures are concentrated in one cluster, while it is maximum and equal to
log2 (𝑘∗) when failures are distributed uniformly across all the clusters. Hence, we can use the following formula as a
normalized measure of entropy ranging between 0 and 1:

𝐻𝐴 =
𝐻𝐴

log2 (𝑘∗)
(5)

We ran clustering ten times to account for randomness and took the average of coverage and entropy across the ten
runs. Then, we compared statistically the coverage and entropy averages for each failure search approach across the
respective ten runs by computing the Mann-Whitney U Test and the Vargha-Delaney effect size.
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To evaluate the impact of algorithm, seed and mutation strategies on Indago (RQ3), we used the same metrics:
number of failures and input/output diversity, the latter quantified with coverage and entropy.

5.3 Results

Table 2. Number of failures and input/output diversity measured by cluster coverage or entropy. Values represent the average among

ten runs. Bold faced values indicate a statistically significant difference between Indago and sampling. Underlined values indicate a

large effect size.
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Baselines

random 1 55.00 18.37 31.94 12.13 1 16.08 0.00 30.00 0.00 1 10.00 0.00 10.00 0.00

sampling 13 50.00 0.00 41.10 22.91 1 14.72 12.62 25.00 0.00 5 80.00 54.97 75.00 37.50

Indago

hcrnd 4 75.00 41.54 44.72 26.90 1 29.57 19.03 40.00 0.00 3 65.00 23.80 56.00 10.11

hcfail 5 85.00 64.87 45.45 33.95 2 27.37 18.00 50.00 16.23 4 90.00 73.61 95.00 77.20

hcsal+rnd 6 90.00 57.37 48.01 31.59 4 59.73 61.32 95.00 77.75 2 60.00 28.37 60.00 26.48

hcsal+fail 13 100.00 93.23 66.03 58.91 3 56.98 55.66 80.00 53.70 11 100.00 83.80 100.00 86.69

garnd 6 55.00 5.44 43.39 25.68 2 35.95 31.21 55.00 29.18 6 90.00 72.00 80.00 52.86

gafail 11 50.00 0.00 46.55 29.64 2 24.99 12.90 63.50 43.48 22 90.00 85.63 70.00 19.16

gasal+rnd 8 60.00 10.31 47.73 29.77 1 23.87 17.45 40.00 19.52 5 83.00 59.70 60.00 17.22

gasal+fail 27 55.00 2.01 51.95 29.22 4 38.11 24.99 75.00 44.04 42 100.00 97.61 70.00 12.73

Effectiveness (RQ1). Column # Failures in Table 2 shows the average number of failure environment configurations
triggered by each failure search approach out of ten runs for each case study. Considering Indago in all its settings,
such number is between 4 and 27 in the Parking environment, between 1 and 4 in the Humanoid environment and
between 2 and 42 in the Driving environment.

RQ1: Overall, Indago successfully challenged the DRL agent under test in all case studies, by generating a
significant number of failure environment configurations. On average, the sampling approach generated 6
failures while Indago generated from 3 to 24 failures.
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Comparison (RQ2). Table 2 shows the results for the first setting: bold values indicate a statistically significant
difference (at level 𝛼 = 0.05) between Indago and sampling; values are underlined when the effect size is large. In
particular, in Parking the best approach is gasal+fail that is able to generate more failures than other approaches (i.e.,
27 on average) and the difference w.r.t. the sampling approach (i.e., 13 failures on average) is statistically significant
with a large effect size. In Humanoid, several settings of Indago are significantly better than sampling (which exposes
only 1 failure on average). In Driving, gasal+fail and hcsal+fail are the best approaches with, on average, 42 and 11
failures respectively. Their difference w.r.t. the sampling approach (which exposes 5 failures on average) is statistically
significant, and the effect size is large.

Regarding the comparison with the random approach, in all case studies, classifier-based approaches (i.e., sampling
and Indago) found significantly more failures with a large effect size. Hence, our empirical results show that the failures
experienced during training are indeed related to and informative of the failures of the DRL agent under test.

The macro-columns Diversity in Table 2 show the average out of ten runs of the Coverage and Entropy metrics
regarding input and output diversity for each failure search approach. Although in Parking the gasal+fail approach
generates more failures than sampling, the two approaches are comparable in terms of input and output diversity (both
considering coverage and entropy). On the other hand, the hcsal+fail approach is able to generate inputs that are both
significantly different from those of sampling (i.e., higher coverage) and better distributed among clusters (i.e., higher
entropy). Output coverage and entropy values are higher for hcsal+fail than those of sampling (66.03% and 58.91% vs
41.10% and 22.91% respectively), with output coverage being comparable and output entropy being statistically better
with a large effect size. This means that, although hcsal+fail and sampling generated the same number of failures (i.e., 13
on average), the failures produced by hcsal+fail exercise more diverse behaviours of the DRL agent under test.

For what concerns Humanoid, the two best approaches in terms of input and output diversity are settings of Indago
(hcsal+rnd and hcsal+fail) both considering coverage and entropy (the gasal+fail setting is comparable to them). All of
them are significantly better than sampling with a large effect size, except for gasal+fail, whose input entropy (24.99%)
is not significantly different from that of sampling (12.62%). In Driving, the best approaches in terms of input and
output diversity are hcsal+fail and gasal+fail, the former significantly better than sampling on input coverage and output
diversity and the latter on input diversity.

When comparing Indago with the random approach in terms of diversity, most of the Indago settings, especially
those with the saliency-based mutations, are significantly better than random with a large effect size in all case studies.

We identify two reasons for the higher diversity achieved by Indago: (1) the search-based approach of Indago
implicitly favors diversity by locally exploring the environment configuration space until failures are discovered. In
this way, it is more likely for Indago to obtain failure configurations starting from diverse seeds. This is more difficult
when failure configurations are to be randomly generated from scratch (e.g., by the sampling approach). (2) The failure
environment configurations generated at training time affect different versions of the agent under test, which is evolving
during its training process. Hence, these configurations tend to be quite diverse. Indago effectively uses such seed
configurations by retaining their diversity while at the same time increasing their failure exposure.

RQ2: Overall, both considering the number of failures triggered and their input and output diversity, hcsal+fail
is the best setting of Indago, generating 50% more failures than the sampling approach as well as failures
being 78% more input-diverse and 74% more output-diverse.
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Table 3. Impact of the seed strategy. In each row, the three case studies (Parking / Humanoid / Driving) are separated by a forward

slash “/” symbol. An “F” symbol indicates a statistically significant difference in favor of the approach with the failure seed; a dash “-’

symbol indicates that the two approaches are indistinguishable and an “R” symbol (missing in the table) would indicate a statistically

significant difference in favor of the approach with the random seed. As for the comparisons in the first two research questions, we

compute statistical significance using the Mann-Whitney U Test.
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hcrnd vs hcfail - / - / F - / - / F - / - / F - / - / F - / - / F
garnd vs gafail F / - / F - / - / - - / - / - - / - / - - / - / -

hcsal+rnd vs hcsal+fail F / - / F - / - / F F / - / F - / - / F F / - / F
gasal+rnd vs gasal+fail F / F / F - / - / F - / - / F - / F / - - / - / -

rnd vs fail 0 vs 8 0 vs 3 0 vs 4 0 vs 3 0 vs 3

Hyperparameters (RQ3). On average and considering all case studies, hcsal+fail generates failures that are the most
diverse both in terms of input and output diversity. Specifically, hcsal+fail has the best input coverage (85.66% vs 69.91%
of the second best hcsal+rnd), the best input entropy (77.56% vs 52.16% of the second best hcfail), the best output coverage
(82.01% vs 67.67% of the second best hcsal+rnd) and the best output entropy (66.43% vs 45.27% of the second best hcsal+rnd).

On the other hand, gasal+fail is the setting of Indago that generates the highest number of failures (i.e., 24 on average).
However, such failures cover fewer clusters and have a lower entropy than the failures generated by hcsal+fail. Therefore,
considering the number of failures and their diversity, hcsal+fail is the preferable Indago setting.

Across all case studies, the settings of Indago that use the saliency-based mutations are more effective than their
counterparts, i.e., the difference is always statistically significant with a large effect size, except for Humanoid, where
gasal+fail is comparable to garnd. Overall, this shows that the guidance offered by the saliency-based mutation operator
is effective at finding failure environment configurations.

In Table 3 we report a further comparison between the different settings of Indago, focused on the impact of the seed
strategy (random, rnd, vs failure, fail). In each cell of the table the three case studies are separated by a forward slash “/”
symbol. The symbol “F” (respectively “R”) indicates that failure seeding (respectively random seeding) is statistically
better than random (respectively failure) seeding. A dash symbol indicates no statistically significant difference. For
instance, for the raw hc

rnd
vs hc

fail
and the macro-column # Failures, the hc

rnd
and the hc

fail
settings are equivalent in

the first two case studies, i.e., Parking and Humanoid (hence the two “-” symbols separated by the “/” symbol), while the

hc
fail

setting is statistically better than hc
rnd

in the last case study, i.e., Driving (hence the last symbol is “F”). In terms of
number of failures we can see that, in most cases (i.e., 8/12) the settings with the failure seeds are significantly better
than their random seeds counterparts. In particular, the gasal+fail setting is significantly better than the gasal+rnd setting
in all case studies (while, for instance, the hcsal+fail is significantly better than hcsal+rnd in Parking and Driving but not
in Humanoid). From the point of view of diversity, the settings of Indago with the failure seeds are mostly comparable
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to the settings with the random seeds, except for Driving, where the failure seeds are critical to generate more diverse
failures. Random seeding is never a better choice (indeed the “R” symbol is completely missing in the table), across all
settings of Indago and across all three case studies.

RQ3: Overall, the settings of Indagowith the saliency mutation strategy and failure seeds are either comparable
or significantly better than their random counterparts. In particular, failure seeds are significantly better than
random seeds in 21 comparisons out of 60. Between hill climbing and genetic algorithm, the former is preferable
because it generates more diverse failure scenarios (i.e., on average hill climbing failures are 60% more input-
diverse and 80% more output-diverse than genetic algorithm failures). The latter might be considered when the
number of exposed failures is important, regardless of their diversity.

Table 4. Number of failures and input/output diversity measured by cluster coverage or entropy. Values represent the average among

ten runs. Bold faced values indicate a statistically significant difference between Indago and the best of the two baselines. Underlined

values indicate a large effect size. We indicate with a bar the setting of Indago using the fitness-based surrogate model, i.e., hc
sal+rnd

.
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Baselines

random 1 46.67 12.10 55.00 19.18 1 30.83 0.00 37.50 5.00 0 23.72 0.00 20.00 0.00

train. fail. 1 45.00 0.00 50.00 0.00 1 25.83 0.00 35.00 10.00 2 33.34 9.70 60.00 20.00

Indago

hcsal+rnd 3 71.67 57.22 80.00 62.42 3 43.42 7.29 75.00 48.08 3 57.97 48.61 80.00 56.23

hcsal+rnd 3 80.00 62.06 80.00 52.88 12 81.92 57.35 100.00 86.02 10 91.16 88.10 100.00 80.48

Ineffective Failure Seeds (RQ4). RQ3 shows that the saliency mutation operator is effective at guiding the search
towards failure-inducing configurations and that hill climbing generates more diverse failures w.r.t. genetic algorithm.
To test the effectiveness of Indago in the presence of ineffective failure seeds, we consider its best configuration, i.e.,
hill climbing with the saliency mutation operator and random seeds. We chose to use random seeds to test whether the
surrogate model is able to guide the search without relying on ineffective failure seeds. In Table 4, we indicate with
hcsal+rnd the version of Indago using the classifier, while we indicate with hcsal+rnd the version of Indago that uses
the regressor-based surrogate model.

Table 4 shows that replaying training failures (row train. fail.) is ineffective at testing time, being indistinguishable
from random in Parking and Humanoid. In Driving, training failure replay generates significantly more failures than
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random (i.e., on average 2 vs 0 respectively), although regarding diversity, only the output coverage of training failures
is statistically different than the output coverage of failures generated by random.

Regarding Indago, the version with the classifier-based surrogate model (i.e., hcsal+rnd) generates significantly more
failures than random and training failure replay in Parking and Humanoid. Such failures are also significantly more
diverse than the two baselines in Parking and Humanoid, although in the latter there is statistical significance only
for output coverage. Regarding Driving, hcsal+rnd failures have a significantly higher input entropy, while for output
coverage there is no statistical significance, although the trend is in favor of hcsal+rnd (i.e., 80 vs 60 for output coverage
and 56 vs 20 for output entropy).

The version of Indago with the regressor-based surrogate model (i.e., hcsal+rnd) is equally effective at finding failures
as the classifier-based one in Parking. In Humanoid and Driving, it shows statistical significance of the differences w.r.t.
the two baselines, while the classifier-based one does not (e.g., on input diversity in Humanoid; number of failures,
input and output coverage in Driving).

RQ4: Overall, when failure seeds are ineffective, Indago is able to trigger more failures of the DRL agent under
test than replaying the training configurations at testing time in all three case studies (i.e., on average 3 vs 1 in
Parking, 12 vs 1 in Humanoid and 10 vs 2 in Driving), with the differences being statistically significant with a
large effect size.

6 DISCUSSION

6.1 Solvability of the Failures

For each approach, we resumed training of the three DRL agents under test by feeding all the failure environment
configurations found by each approach in every run of the environment generation process. In every case study and for
each approach, we found that the given DRL agent could learn how to successfully terminate the respective episodes
by performing some additional training. This shows that the failure environment configurations generated by all
approaches, and indeed by Indago, are solvable by the DRL agents under test.

This also indicates that, although a generated environment configuration can be challenging for the DRL agent under
test, there exists a sequence of actions that let the DRL agent solve the task successfully. For instance, after additional
training, the DRL agent in the Parking environment is always able to find trajectories for the vehicle to reach the target
spot, which is instead missed by the original DRL agent under test. Similarly, in the Driving environment, the generated
failure environment configurations do not induce track shapes that are beyond the mechanical capabilities of the vehicle.
Regarding Humanoid, the initial positions of the joints as well as their velocities, resulting from the generated failure
environment configurations, do not prevent the DRL agent to control and regain the balance of the robot.

Solvability of the failure environment configurations generated by Indago shows that such environment configura-
tions represent real weaknesses of the DRL agent under test, which could realistically occur during the operation of the
DRL agent in production.

6.2 Training Failures

6.2.1 Qualitative Analysis. A simple way to test a DRL agent is to replay the training failures except for the earliest ones
(e.g., by filtering out the first 30% of the failure environment configurations). However, this has two major downsides:
(1) the DRL agent under test may have adapted to failure environment configurations in which weaker versions of
Manuscript submitted to ACM
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Fig. 5. t-SNE projection in 2D of trajectories associated with hc
sal+fail

( ) and training failures ( ) configurations. The C symbol

indicates the centroid of a cluster. The leftmost plot (A) shows trajectories for the Parking environment, the center plot (B) for the

Humanoid environment, and the rightmost plot (C) for the Driving environment.

itself failed, despite the exclusion of early failures; (2) such an approach would not be generative and by design it
can only replay existing failure environment configurations. Generative approaches like hcsal+fail produce diverse
and potentially unlimited challenging inputs exposing the limitations of the DRL agent, and potentially improving it
through retraining [15].

For the sake of completeness, we replayed at testing time the failure environment configurations that happened during
the DRL training process, and we compared them with the failures generated by hcsal+fail. In particular, we clustered the
DRL agents trajectories associated with those failures, following the same process described in Section 5.2.2. Figure 5
shows a 2D t-SNE [64] projection of the failure trajectories of the three DRL agents under all failure environment
configurations in each case study. Cluster centroids are indicated with the letter C. In Humanoid (Figure 5.B) the
trajectories associated with the failure environment configurations discovered by Indago, cover more clusters than the
trajectories associated with training failure environment configurations. In Parking (Figure 5.A) and Driving (Figure 5.C)
the two classes of trajectories are complementary since they cover the same clusters but with a different intra-cluster
distribution, showing that the generative approach of Indago can explore new clusters or new regions within a cluster.

6.2.2 Quantitative Analysis. We also carried out a quantitative analysis by measuring the number of failures triggered
when replaying the failure environment configurations that happened during training and their diversity w.r.t. the
failure configurations found by the two best settings of Indago, i.e., hcsal+fail and gasal+fail. Table 5 shows the results
for each case study.

In Parking, the training failure configurations trigger significantly more failures than both Indago’s settings (i.e., 31
vs 13 and 27 respectively). Such failures are equivalent to those found by hcsal+fail in terms of both input and output
diversity, but significantly more diverse than those found by gasal+fail. In Humanoid, both Indago’s settings are better
than replaying failure configurations in all dimensions, i.e., in terms of number of failures and their diversity. In Driving,
hcsal+fail and the training failures are equivalent, while gasal+fail is significantly better in terms of number of failures
(i.e., 42 vs 13) and their input entropy (i.e., 97.61 vs 66.99), but significantly worse in terms of output diversity.

Since the comparison between failure replay and Indago is not conclusive on input and output diversity (i.e., none
of the two is superior w.r.t. the other in all case studies), we measured the complementarity between the two competing
approaches. In fact, high diversity could be achieved by the two approaches either with similar or with complementary
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Table 5. Comparison between training failures (i.e., train. fail.) and failures found by the best Indago settings (i.e., hc
sal+fail

and

ga
sal+fail

). The comparison is in terms of number of failures, input/output diversity measured by cluster coverage or entropy and

Gini purity coefficient. Values represent the average among ten runs. Bold faced values indicate a statistically significant difference.

Underlined values indicate a large effect size.
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train. fail. 31 100.00 98.10
60.48

95.00 40.62
66.93

1 35.00 10.00
83.42

35.00 10.00
87.40

13 100.00 78.32
53.84

100.00 74.66
53.23

hcsal+fail 13 100.00 93.53 85.00 42.24 3 100.00 66.19 100.00 63.70 11 100.00 81.95 100.00 83.40

train. fail. 31 100.00 85.32

81.55
89.83 51.49

81.54
1 28.33 10.00

89.84
30.00 10.00

89.41
13 95.00 66.99

72.76
100.00 75.57

69.63
gasal+fail 27 50.00 0.00 48.84 25.17 4 91.67 54.02 90.00 50.51 42 100.00 97.61 64.50 6.78

distribution of the inputs/outputs among the same clusters. To measure such complementarity between training failures
and the failures that Indago generates, we use the Gini purity coefficient [50] for each cluster, defined as follows:

𝐺 (𝑖) =
|𝐶 |∑︁

𝑐 𝑓 =1
𝑝2𝑐 𝑓 (6)

where 𝑖 indicates the 𝑖-th cluster, |𝐶 | is the number of classes and 𝑝𝑐 𝑓 represents the probability of finding a data point
of class 𝑐 𝑓 in cluster 𝑖 . The number of classes is |𝐶 | = 2, since we are measuring the complementarity of two approaches.
Equation 6 gives the probability of having a failure in a cluster belonging to one specific class. In particular,𝐺 (𝑖) = 1
means that cluster 𝑖 is pure, i.e., all the data points in the cluster belong to a single class.

The Gini Purity columns in Table 5 show the average Gini purity coefficients for each case study. Overall, we can
observe that, in both settings of Indago, i.e., hcsal+fail and gasal+fail, the majority of the clusters are highly pure (i.e., the
Gini purity is always greater than 50%). In particular, the setting gasal+fail shows a higher degree of complementarity
with the training failures than hcsal+fail (across all the case studies, the Gini purity coefficients are 80.79% and 67.71%
respectively).

Hence, we conclude that replayed failures and new failures generated by Indago are highly complementary. Devel-
opers should use both during RL testing.

6.3 Qualitative Analysis of Indago Failures

Figure 6 shows the failure trajectories associated to failure environment configurations generated by Indago. For all
case studies we selected two failure trajectories belonging to different clusters representing two different failure modes.

In Parking (Figure 6.A), the first failure mode (at the top) consists of the DRL agent not being able to park the vehicle
in the target spot with the right heading given a certain amount of time; the second failure mode (at the bottom) is
when the DRL agent does not complete the parking maneuver due to a crash with another vehicle parked beside the
target spot.
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Fig. 6. Representation of different trajectories associated with hc
sal+fail

failure configurations. The trajectory of the vehicle is shown

in blue for the Parking environment (A) and in red for the Driving environment (C). In Humanoid (B), the trajectory of the robot is

the latitudinal position over time.

In Humanoid (Figure 6.B), the abdomen latitudinal coordinate of the robot should be among the two horizontal lines
shown in Figure 6 called healthy range [18], otherwise the robot falls and the episode terminates unsuccessfully. The
two failure trajectories associated with Indago failure environment configurations are different: the one at the top
shows a trajectory that monotonically goes down in a relatively short amount of time (i.e., just above 70 timesteps).
The trajectory at the bottom is more noisy indicating that the DRL agent under test is more uncertain. Indeed, the DRL
agent is able to recover the partial fall around the middle of the episode (i.e., around 120 timesteps) while eventually
failing after ≈ 200 timesteps.

In Driving (Figure 6.C), the first failure mode shows the DRL agent failing to drive the last curve of the track, while
the trajectory at the bottom represents a track with a difficult left curve at the beginning.

6.4 Discrete vs Continuous Configurations

In the Parking environment, the number of failures found by the sampling approach are equivalent to the failures
found by the best Indago setting, i.e., hcsal+fail (i.e., 13 on average), although the failures generated by hcsal+fail have a
significantly higher input diversity and output entropy. Parking environment configurations are composed of several
discrete and only a few continuous parameters, and they are subject to few constraints. As a consequence, sampling
Parking environment configurations at random is efficient, as a large number of candidate environment configurations
can be generated within the given search budget, among which it is more likely to find environment configurations
where the failure prediction is high.
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Also in the Humanoid environment there are few validity constraints, hence it is efficient to sample environment
configurations at random. However, the space of environment configurations is larger than in Parking (almost twice as
much, i.e., 47 vs 24 parameters) and all parameters are in the continuous domain. As a consequence, finding challenging
environment configurations by sampling at random is not effective. Indeed, our results show that the sampling approach
generates, on average, 1 failure, while hcsal+fail generates 3 failures (a 200% increase), with a significantly higher
input and output diversity. This shows that Indago works much better than random sampling when environment
configurations have continuous parameters.

The Driving environment offers yet another perspective. Indeed, similarly to Parking, Driving environment con-
figurations are mostly composed of discrete parameters but, on the other hand, such environment configurations are
subject to complex constraints. Therefore, sampling Driving environment configurations at random is not efficient,
contrary to modifying existing environment configurations. Indeed, the sampling approach generates, on average, 5
failures, while hcsal+fail generates 11 failures (i.e., a 120% increase), with a significantly higher input and output diversity.
Although, the Driving environment configurations have mostly discrete parameters our search-based approach is more
effective than sampling, since it is able to use the search budget more efficiently by modifying existing environment
configurations which satisfy the complex constraints that hold in this environment.

6.5 Ablation Study on the Driving Environment

Table 6. Comparison between failures found by Indago settings on the Driving environment with and without enabling the road

constraints when generating new configurations

Driving

w
/
Co

ns
tr.

w
/
o
Co

ns
tr.

# Failures

Indago

sampling 5 4
hcrnd 3 1

hcsal+rnd 2 1
garnd 6 3

gasal+rnd 5 3

When generating roads for the driving environment, we make sure that they are challenging enough for the agent
under test. Indeed, we constrain the generation to roads that have at least three curves, one of which must be with a
rotation angle of at least 120°. However, the driving agent under test might experience failures also when roads do
not obey such constraints. To test this hypothesis, we executed Indago with random seeds instead of failure seeds (as
failure seeds obey the constraints by construction) and the sampling approach. Table 6 shows the number of failures
found when executing the failure search with constraints enabled (i.e., column w/ Constr.) and disabled (i.e., column w/o

Constr.). Results show that for sampling, hcsal+rnd and gasal+rnd there is no statistical significant difference between the
number of failures generated by the respective techniques with and without road constraints. However, hcrnd and garnd
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find significantly more failures when constraints are enabled, showing that restricting the inputs during the search can
be beneficial to discover more failures.

6.6 Regressor-based vs Classifier-based Surrogate Model

Due to the low number of failures in Parking and Driving in the setting for RQ4, we resorted to a regressor-based
surrogate model to guide the search towards failure configurations. We observe that in Parking, the regressor-based
surrogate model is as effective as the classifier-based surrogate model. On the other hand, the former is significantly
better than the latter in both Humanoid (in terms of higher number of failures, better input diversity and output
coverage) and Driving (in terms of higher number of failures and better input diversity).

One explanation of this phenomenon is in the function we use to compute the continuous values for each episode
in the different case studies. In Parking, we use the episode length as guidance towards failures, which is not more
effective than using a binary classifier. Indeed, the episode length only gives an indirect guidance towards a failure; a
long episode might point to configurations where the vehicle is simply far from the parking target spot. On the other
hand, in Humanoid, we track the height of the robot throughout the episode; the lower the minimum height the higher
the chance that the initial configuration is challenging for the DRL agent under test. Likewise, in Driving we use the
minimum cross track error in an episode, which guides the regressor-based surrogate model towards configurations
with challenging curves.

In conclusion, the regressor-based surrogate model outperforms the classifier-based one in two out of three case
studies, while being equivalent to the classifier-based surrogate model in Parking. In such contexts (see the RQ4

macro-column in Table 1), the number of failures is low (Parking and Driving) or training failures are ineffective
(Humanoid), and a continuous-valued function provides a finer-grained signal when training the surrogate model w.r.t.
boolean values. However, it requires domain knowledge of the task at hand to define a continuous-valued function that
measures how challenging a certain environment configuration is for the agent.

6.7 Threats to Validity

6.7.1 Internal Validity. A threat to internal validity may come from an unfair comparison of the considered approaches.
We gave the same search budget to all approaches, and we generated the same number of environment configurations.
Moreover, we considered the same DRL agents for each approach and executed the tests on the same environments.

6.7.2 External Validity. Using a limited number of subjects poses an external validity threat, in terms of generalizability
of our results. To mitigate such threat, we chose three environments which are widely used in the DRL community and
have different characteristics that challenge the capabilities of each failure search approach.

6.7.3 Conclusion Validity. A conclusion validity threat may come from the wrong interpretation of the results due
to random variations and inappropriate use of statistical tests. We mitigated this threat by executing each failure
search approach multiple times, as well as repeating multiple times the execution of environment configurations on
non-deterministic environments. When computing diversity, we executed clustering multiple times to account for the
randomness of the 𝑘-means algorithm. Moreover, we compared the different approaches, both in terms of number of
failures and in terms of their diversity, using rigorous statistical tests such as the Mann-Whitney U Test for computing
the 𝑝-value and the Vargha-Delaney metric to measure the effect size.
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6.7.4 Reproducibility. In terms of reproducibility, we publish our replication package [7], making our evaluation
repeatable and our results reproducible.

7 CONCLUSION AND FUTUREWORK

Our approach to test DRL agents uses the interaction data produced by the DRL agents during training to train a
surrogate model — i.e., a classifier — on failure and non-failure (i.e., pass) environment configurations. Then, it uses the
failure prediction output of the surrogate model, as a fitness function to be maximized, to achieve high failure-exposure
capabilities of the generated environment configurations while saving computation time. Our empirical results show
that our search-based approach is able to generate 50% more failures than the state-of-the-art sampling approach and
that such failures are more diverse in all case studies (on average, 78% more diverse regarding input diversity, and 74%
more diverse regarding output diversity). When training failures are effective at testing time, our results show that
Indago generates failures that are complementary. On the other hand, when training failures are ineffective at testing
time, Indago triggers significantly more, and more diverse failures. In our future work we plan to increase the diversity
of the generated failures by incorporating it into the fitness function.
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LIST OF SYMBOLS

𝑡 Timestep

𝑠 State

𝑎 Action

𝑟 Reward

𝜋 Policy

𝜋∗ Optimal policy

S Set of states

A Set of actions

𝑣𝜋 Value function

𝑞𝜋 Action value function

𝑞∗𝜋 Optimal action value function

𝑒 Environment configuration

𝑒𝑓 Environment configuration where the agent fails

𝐸𝑓 Set of environment configuration where the agent fails

𝑐 Class label when training the surrogate model

|𝐶 | Number of classes when training the surrogate model

𝐷 Interaction dataset

𝑊 Weight vector

𝐸 Set of environment configurations

R Set of real numbers

𝑓 Surrogate model

𝑓 ∗ Optimal surrogate model

𝑁𝑆 Neighborhood size in hill climbing algorithm

𝑓 𝑝 Failure prediction

𝑃𝑆 Population size in genetic algorithm

𝑐𝑟 Crossover rate in genetic algorithm

𝑜𝑒 Offspring environment configuration in genetic algorithm

𝑝𝑒 Parent environment configuration in genetic algorithm

𝑐𝑒 Environment configuration after crossover

𝑚 Small constant value used in the initialization phase of the Humanoid environment

𝑁 Number of environment configurations for the training of the surrogate model

𝑌 Set of class targets for the training of the surrogate model

𝑇 Number of environment configurations generated by each failure search approach

𝐵 Search budget in seconds, for each failure search approach

𝐴12 Vargha-Delaney effect size

𝛼 Significance level for the Mann Whitney U test

𝑘 Number of clusters for the k-means clustering algorithm
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𝑘∗ Optimal number of clusters for the k-means clustering algorithm

𝐴 Generic failure search approach

𝐶 Cluster coverage metric

𝛾 Function that measures if a certain cluster is covered by a given failure search approach

[ Function that measures the probability of finding a failure of a certain failure search approach

in a cluster

𝐹 Function that measures the number of failures generated by a given failure search approach in

a cluster

𝐻 Entropy metric

𝑐 𝑓 Failure class label

𝐺 Gini purity coefficient
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