
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 1

Parallelization in System-level Testing: Novel
Approaches to Manage Test Suite

Dependencies
Pasquale Polverino, Fabio Di Lauro, Matteo Biagiola, Paolo Tonella Member, IEEE Computer Society ,

and Antonio Carzaniga,

Abstract—System-level testing is fundamental to ensure the reliability of software systems. However, the execution time for system
tests can be quite long, sometimes prohibitively long, especially in a regimen of continuous integration and deployment. One way to
speed things up is to run the tests in parallel, provided that the execution schedule respects any dependency between tests. We
present two novel approaches to detect dependencies in system-level tests, namely PFAST and MEM-FAST, which are highly
parallelizable and optimistically run test schedules to exclude many dependencies when there are no failures. We evaluated our
approaches both asymptotically and practically, on six Web applications and their system-level test suites, as well as on MySQL
system-level tests. Our results show that, in general, PFAST is significantly faster than the state-of-the-art PRADET dependency
detection algorithm, while producing parallelizable schedules that achieve a significant reduction in the overall test suite execution time.

Index Terms—System-level testing, Test dependencies

✁

1 INTRODUCTION

System-level testing is fundamentally important but also
time-consuming. System-level test suites can run for hours
or even days [1], and these long execution times can become
a critical limitation especially within a regimen of continu-
ous integration and deployment. For instance, Dobslaw et
al. [1] studied test selection using industrial test suites de-
veloped at Huawei Cloud Computing Technologies whose
sizes range from 3k to 11k test cases. Fortunately, it is possi-
ble to allocate virtually unlimited computing resources at a
relatively low cost to run the tests in parallel. However, the
parallel scheduling of the tests, or the selection of a subset
of the tests, must be consistent with whatever semantic
dependencies might exist between tests. In principle, one
could rely on explicitly declared dependencies. In practice,
such specifications are rare; even when they exist, they
might be inconsistent with the tests. Our goal, then, is to
automate and optimize the parallel execution of system-
level tests by detecting dependencies and therefore deriving
consistent test schedules from the test suite itself. This is not
a new problem. Other researchers have developed ways to
detect dependencies, primarily in unit tests for Java [2], [3],
[4], [5]. In particular, the tools and techniques developed so
far, which include DTDETECTOR [2], ELECTRICTEST [3], and
PRADET [4], combine static and dynamic analysis to extract

This article has been accepted for publication in IEEE Transactions on Software
Engineering. This is the author’s version which has not been fully edited
and content may change prior to final publication. Citation information: DOI
10.1109/TSE.2025.3572388

• Pasquale Polverino, Fabio Di Lauro, Matteo Biagiola, Paolo Tonella,
and Antonio Carzaniga are with the Università della Svizzera ital-
iana, Lugano, Switzerland. Street: Via Buffi 13. Postcode: 6900. E-
mail: {pasquale.polverino, fabio.di.lauro, matteo.biagiola, paolo.tonella,
antonio.carzaniga}@usi.ch.

an approximate set of dependencies from read-after-write
operations on Java objects that are shared among tests.

With this work, we consider a different context. We focus
on system tests rather than unit tests. We also focus on Web
applications and database management systems (e.g., the
MySQL server), which are business-critical domains where
dependability must be ensured with thorough testing, and
that are representative of a broad class of distributed appli-
cations. In this context, there are still dependencies between
tests, and the dependencies are still due to shared state and
therefore data flow between tests. However, this shared state
exists in less identifiable forms in various components at
different levels (e.g., front end, application tier, database),
which renders existing white-box dependence analysis not
applicable. Biagiola et al. [5] also considered this context
and developed a technique that infers likely read-after-write
dependencies based on test names. Our general approach is
different.

We treat the application and its tests purely as black
boxes within a simple model of dependencies. This model
is a special form of manifest test dependence as defined
by Zhang et al. [2]. In essence, given a test suite T =
t1, t2, . . . , tn of n tests, which we take as a valid sequential
schedule, we consider dependencies ti →↑ tj , when j > i,
that indicate that tj depends on a prior execution of ti.
We further assume that the only way to detect such a
dependency is to observe that tj would fail in a sequence
of tests . . . tj that does not contain ti (we discuss our model
of dependencies in greater detail in Section 2).

With these basic assumptions, we develop two novel
dependency detection algorithms. Like the state-of-the-art
PRADET algorithm, both our algorithms essentially assem-
ble a test dependency graph and then use it to produce a set
of valid test schedules of minimal maximal length that cover

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 2

all tests. The main intuition behind these two algorithms
is in the way they confirm or exclude dependencies. In
particular, the idea is to optimistically run test schedules that
would trigger a series of dependencies, and therefore can
confirm at least one dependency in case of failure, or exclude
many dependencies when there are no failures. Also, unlike
PRADET, these algorithms are designed to be themselves
highly parallelizable. Indeed, PRADET was originally devel-
oped for and evaluated with Java unit tests, which typically
run in the order of milliseconds. By contrast, the set-up
and execution times for Web and MySQL system tests are
in the order of seconds. Furthermore, MySQL support the
execution of system tests with the Valgrind [6] memory
analysis tool. The use of Valgrind is very valuable. On the
other hand, Valgrind significantly increases the execution
time of the test suite. This is where the efficiency, both
in the analysis phase and in the parallelization of tests, is
particularly desirable.

The first algorithm, which we call Parallel Framework
for Automated System Testing (PFAST), iteratively excludes
each individual test ti from the initial schedule with the
intent to optimistically exclude all dependencies on ti. If a
failure occurs, the algorithm can certainly include a depen-
dency on ti, and then it refines the schedule to detect other
dependencies on ti. In the worst case, PFAST requires the
execution of O(n2) test schedules. The second algorithm,
called MEMory-intensive FASt web Testing (MEM-FAST), in-
crementally builds and runs passing schedules of increasing
length. In the worst case, MEM-FAST requires the execution
of an exponential number of test schedules. However, the al-
gorithm is very efficient and practical—outperforming both
PFAST and PRADET—when the underlying test dependency
graph is very sparse, that is, when tests are almost always
independent.

We evaluate our algorithms on six real Web applications
and their system-level tests, as well as on eight MySQL
system-level test suites. These experiments demonstrate that
our algorithms serve their primary purpose of automating
the parallelization of test suites, obtaining a significant re-
duction in overall execution time. This reduction is the same
achieved by PRADET, which makes sense, as the reduction
is anyway a property of each test suite. However, the exper-
iments also demonstrate that our algorithms run orders of
magnitude faster than PRADET. We also conduct a Monte
Carlo analysis of the asymptotic behavior of our algorithms
as well as of the PRADET algorithm in the presence of
various classes of test dependencies.

In summary, we contribute: (1) A general-purpose test-
dependency detection algorithm called PFAST; (2) A special-
purpose test-dependency detection algorithm called MEM-
FAST that is particularly suitable for very sparse depen-
dency graphs; (3) Concrete implementations of both algo-
rithms within an automation and optimization framework
for system-level testing; (4) An experimental study in which
we analyze the benefits and performance of our system-level
testing framework with real applications as well as with a
battery of synthetic cases.

2 DEPENDENCY MODEL

Let T = ↓t1, t2, . . . , tn↔ be a given test suite consisting of
n tests. A schedule for T is a set {S1, S2, . . .} of sequences
Si ↗ T of subsets of T . A sequence Si is valid if the
sequential execution of all the tests in Si completes with no
failures. We define a test failure as a violation of an oracle,
either explicit (i.e., assertions written by developers in the
test case), or implicit (e.g., uncaught exception). A schedule
is valid if all its sequences are valid. We assume that the
given, sequential scheduling of the test suite, t1, t2, . . . , tn is
valid. We therefore call the schedule consisting of the single
sequence S = T the reference schedule. In the rest of the paper
we also sometimes refer to schedules consisting of a single
sequence. In those cases, where there is no ambiguity, we
use the term schedule to refer directly to their test sequence.

In our dependency model, there is no use in scheduling
tests in any order other than the one consistent with the ref-
erence schedule. This is because, with a sequence containing
tests ti and tj , either ti must precede tj , or vice-versa, or
both relative orders are valid. Thus, since we assume that
the reference schedule is valid, a schedule in the same order
as the reference schedule is just as good as the latter. For
example, consider a test suite ti,tj ,tk in which tk depends on
both ti and tj , and no other dependencies exist. Here, both
ti,tj ,tk and tj ,ti,tk are valid (minimal) schedules, but there
is no reason to prefer tj ,ti,tk over ti,tj ,tk. We therefore only
consider schedules where every sequence Si is a subsequence
of T . In other words, for our purposes, a schedule of T

consists of sequences of tests Si obtained by removing tests
from T .

A test dependency tj ↑ ti is a binary, transitive relation
between tests tj and ti, which we read as “tj depends on
ti” and that we define as follows: tj ↑ ti, with j > i, if and
only if every valid sequence S that contains tj also contains
ti (before tj).

Given a test suite T = ↓t1, t2, . . . , tn↔, the test depen-
dency graph (TDG) is a directed graph G = (V,A), with
V = {t1, t2, . . . , tn} and A ↗ V ↘ V , where each arc
(tj , ti) ≃ A represents a direct dependency tj ↑ ti, meaning
that there is a dependency tj ↑ ti, and there is no other test
tk such that tj ↑ tk and tk ↑ ti.

The test dependency graph embodies the dependency
relations and therefore also the main scheduling problem we
want to solve. What we want is a schedule that is complete
and also minimal. A schedule is complete if every test ti

is in at least one subsequence. A schedule {S1, S2, . . .} is
minimal when (1) there are no two sequences Si, Sj such
that Si ↗ Sj , and (2) the length ω = max{|Si|} is minimal.
A complete and minimal schedule can be computed from
the test dependency graph as follows: for each vertex ti

that has no incoming arcs, add a sequence Si defined by
the transitive closure of the dependency relation starting
from ti, which can be computed with a breadth-first search,
Si = BFS (G, ti). Specifically, we iterate backward on the
original test suite; for each test not included in any previ-
ously computed sequence, we use BFS to discover all its
direct and indirect dependencies. We add those as a new
sequence, and continue until we have covered all tests. And
as specified above, the order of the tests within Si is the
same as within the reference schedule T .



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 3

(a) A test dependency graph (TDG)
(b) Examples of derived se-
quences

t1 t2 t3 t4 t5 t6

t1 t3 t2 t5 t4 t6

t1 t3 t2 t6 t5 t4

t2 t1 t5 t3 t4 t6

(c) Parallel execution of the derived schedules

t1 t2 t1 t4 t1 t3 t5 t1 t3 t6

Figure 1: A test dependency graph (TDG), including derived
sequences and their parallel execution.

Figure 1b presents examples of both valid and non-valid
test sequences derived from the test dependency graph
illustrated in Figure 1a. Additionally, Figure 1c illustrates
the parallel execution of schedules that can be derived from
the TDG.

Notice that our choice of dependency model is a special
case of, and therefore a less general model than the model
of manifest test dependence defined by Zhang et al. [2]. In
other words, there are concrete cases of test dependencies,
even resulting from relatively simple data flows on shared
state, that can not be completely characterized within our
model of dependencies (e.g., alternative dependencies, i.e.,
when a test tj depends on either ti or tk). Still, we believe
that our model is adequate in most practical cases, and our
experimental evaluation supports this position. Notice also
that this choice of model is a fundamental ingredient of the
parallelization framework we propose. In fact, within the
more general model, the problem of detecting dependencies
is NP-hard, whereas under our model, our PFAST algorithm
builds the test dependency graph efficiently, with O(n2) test
suite executions in the worst case, and much closer to O(n)
in practice.

The question, then, is how accurate is the result of
PFAST with respect to the actual dependencies, or even more
concretely with respect to the correctness of the parallel
schedule produced by PFAST. As detailed in Section 3.2.2,
the dependency detection algorithm may fail to detect some
dependencies that do not fit our model. We therefore add a
final check—that the schedules are indeed error-free—and,
if necessary, a repair phase to account for such additional
dependencies. The key point, however, is that in practice the
repair phase is rarely required, and the expected overall cost
of the detection algorithm remains significantly lower than
an algorithm that would account for those dependencies
from the start.

3 ALGORITHMS

We now present the test dependency detection algorithms
that are essential to our test automation and parallelization
framework. However, before detailing our own algorithms
PFAST and MEM-FAST, we describe an extension of the
PRADET algorithm [4] that we implemented to deal with

system-level test suites, and that we then use in our com-
parative evaluation.

3.1 PRADET Algorithm
PRADET was originally proposed by Gambi et al. [4] to
detect dependencies for Java unit test suites. PRADET first
creates an initial set of dependencies between the tests of
a given test suite by running a dynamic data-flow analysis
during the execution of the test suite. Such dependencies
are organized in a test dependency graph. Then, PRADET re-
fines the test dependency graph by testing each dependency
individually, thereby removing the spurious ones. In the
context of system-level testing, the initial data-flow analysis
is most likely not feasible, since it would require a complete
control over all the application components. The starting
point of the algorithm is therefore the most conservative
TDG, meaning that each test tj is assumed to depend on
every test ti with i < j. The algorithm then continues with
the same refinement procedure. See Algorithm 1 for details.

Algorithm 1: The PRADET algorithm for system-
level test suites

Input : T = →t1, . . . , tn↑, a test suite in the original
order

Output: Test Dependency Graph G = (V,A)
1 V ↓ {t1, . . . , tn}
2 A ↓ {(tj , ti)|ti, tj ↔ V ↗ 1 ↘ i < j ↘ n}
3 S ↓ ≃
4 while

⇐(tj , ti) ↔ A, (tj , ti) ⇒↔ S ↗ (V,A \ {(tj , ti)} ⇑ {(ti, tj)})
is acyclic do

5 S ↓ S ⇑ {(tj , ti)} /* select arc (tj , ti) */
6 TDG → ↓ (V,A \ {(tj , ti)} ⇑ {(ti, tj)}) /* invert arc */
7 schedule ↓ COMPUTESCHEDULE(TDG →, ti)

/* schedule based on the original order of the tests in T
that satisfies the dependencies of ti in TDG →. */

8 results ↓ EXECUTESCHDEDULE(schedule)
9 if results[tj] ⇒= FAIL then

10 A ↓ A \ {(tj , ti)}
11 end

12 end

13 (V,A) ↓ COMPUTETRANSITIVEREDUCTION(V,A)
14 return (V,A)

(a) Refinement (b) Resulting TDG

t1

t1 t2 t3

t2 t3

t1
t2

t3

Figure 2: PRADET applied on the test suite T = ↓t1, t2, t3↔

The algorithm starts by building the vertex and the
arcs sets of the initial, full test dependency graph (lines
1–2) where each node ti is connected to all the preceding
nodes (i.e., ti→1, . . . , t1). The algorithm then checks that
each arc in the dependency graph indeed represents a real
dependency. The set S accumulates all the tested arcs in
the main loop (lines 4–12) that runs as long as there is
a yet untested arc in A. PRADET checks whether an arc
(tj , ti) is indeed necessary by executing a sequence of tests



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 4

consistent with a test dependency graph (line 6) in which
the candidate arc is inverted, and therefore in which tj

is executed before its supposed dependent test ti. This
inversion is checked only if it does not create a cycle in
the TDG. This would happen if the candidate arc represents
an indirect dependency implied by other arcs. For example,
suppose t3 ↑ t2 and t2 ↑ t1, and consider now the implied
(indirect) dependency t3 ↑ t1. Inverting t3 ↑ t1 would
create the dependency cycle t3 ↑ t2 ↑ t1 ↑ t3.

In line 7, PRADET builds and runs a schedule that tests
the selected dependency. The schedule is built through
topological sorting, taking into account the original order
of the tests in the test suite, and respecting all the other
dependencies of tj . If the schedule is successful, the arc is
removed from the set A (line 10), meaning that test tj does
not need ti to execute successfully, thus the dependency
tj ↑ ti is spurious. Finally, at line 13, PRADET computes
the transitive reduction of the TDG to remove indirect
dependencies, and returns the resulting graph.

Let us consider the execution of PRADET on the test
suite ↓t1, t2, t3↔. Let us suppose that the underlying test
dependency graph of such test suite has two dependencies,
i.e., t2 ↑ t1 and t3 ↑ t1 (see Figure 2b). The initial test
dependency graph (lines 1–2) built by PRADET contains
three arcs, i.e., t2 ↑ t1, t3 ↑ t2, and t3 ↑ t1. Let us
suppose that the first arc being inverted is t2 ↑ t1 (see
Figure 2a). As t2 has no other dependency, the schedule that
PRADET computes (line 10) is simply ↓t2↔. As the execution
of ↓t2↔ fails, the arc cannot be removed, and t2 ↑ t1 is
marked as a manifest dependency. Let us suppose that the
next arc being inverted is t3 ↑ t2. A schedule for t3 that
respects all dependencies except the inverted one is ↓t1, t3↔.
Since this schedule is successful, we can safely remove the
arc t3 ↑ t2. Following the same procedure, the last arc to
analyze is t3 ↑ t1, which cannot be removed because the re-
sulting schedule (i.e., ↓t3↔) fails. The dependency refinement
algorithm outputs the TDG shown in Figure 2b.

3.2 PFAST Algorithm

PFAST builds on the idea that removing a single test ti from
within a test suite would cause all the tests that depend
on ti to fail. Conversely, should there be no failures, then
PFAST can safely exclude any dependency on ti. Then, by
iteratively repeating this process for all the tests, PFAST
can identify all the dependencies in a test suite. The only
complication arises in the failure case. If tj is the first test
that fails upon the removal of ti, then we can safely conclude
that tj depends on ti. However, we can not draw any
conclusions regarding any other failure tk after tj , since that
might indicate a dependency with tj or just a spurious effect
of the first failure of tj . Therefore, in the case of failures,
PFAST progressively removes the failing tests to determine
the exact dependencies for all subsequent tests. Algorithm 2
shows the PFAST routine.

The algorithm starts by building the vertex and the
arcs set of a disconnected test dependency graph in lines
1–2. The vertex set contains one vertex for each test in
the test suite, while the arcs set is initially empty. In each
iteration of the main loop (lines 3–16) PFAST attempts to
remove one test from the original test suite to determine

Algorithm 2: PFAST

Input : T = →t1, . . . , tn↑, a test suite in its original
order.

Output: Test Dependency Graph G = (V,A)
1 V ↓ {t1, . . . , tn}
2 A ↓ ≃
3 for i = 1 to n⇓ 1 do

4 S ↓ T \ →ti↑ /* remove ti from T */
5 results ↓ EXECUTESCHEDULE(S)
6 while GETFAILEDTESTS(results) ⇒= ≃ do

7 for j = i+ 1 to n do

8 if results[tj ] = FAIL then

9 A ↓ A ⇑ {(tj , ti)}
10 S ↓ S \ →tj↑ /* remove ti from S */
11 break

12 end

13 end

14 results ↓ EXECUTESCHEDULE(S)
15 end

16 end

17 (V,A) ↓ COMPUTETRANSITIVEREDUCTION(V,A)
18 return (V,A)

(a) Exclusion of t1 (a) Exclusion of t2 Resulting TDG

t2 t3 t3

t1 t2 t3

t3

t3

t1

t1 t2
t1

t2

t3

Figure 3: PFAST applied on the test suite T = ↓t1, t2, t3↔

if subsequent tests depend on it. In case of failures, then,
the inner loop (lines 6–15) identifies the exact dependencies
with ti by progressively excluding failing tests. In particular,
a first failure of tj indicates that the dependency tj ↑ ti

exists. Then, PFAST removes tj and reruns the remaining
sequence to detect other dependencies tk ↑ ti, with k > j.
When the main loop ends, PFAST computes the transitive
reduction of the obtained TDG in line 17, to remove indirect
dependencies.

Figure 3 shows an example of the execution of PFAST on
the test suite ↓t1, t2, t3↔. The first test being excluded is t1

(Figure 3a). PFAST runs the sequence ↓t2, t3↔, where t2 fails,
PFAST therefore also removes t2 and executes the sequence
↓t3↔, where t3 also fails (Figure 3a). Correspondingly, PFAST
adds two arcs to the TDG: t2 ↑ t1 and t3 ↑ t1. In the
next main iteration, PFAST excludes test t2 (Figure 3b). The
resulting sequence ↓t1, t3↔ executes without failures, and
therefore no other arc is added to the TDG. The resulting
TDG is shown in Figure 3c.

Notice that the worst-case complexity is quadratic for
both PRADET and PFAST, since both algorithms require the
executions of O(n2) test sequences when the test depen-
dency graph is complete. However, PRADET always iterates
over a quadratic number of arcs (see line 4 in Algorithm 1),
while PFAST is linear in the best case, in the absence of test
dependencies. As we show experimentally, the cost of PFAST
is substantially lower than the cost of PRADET.

3.2.1 Correctness of PFAST

We now prove that PFAST finds all and only the existing
dependencies that conform with our model of dependen-
cies. The correctness derives directly from the following



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 5

loop invariant: at the start of each iteration of the main loop
(lines 3–16), the set of arcs A contains all and only the arcs
that represent dependencies from tests in {ti, . . . , tn} to test
ti→1.

Initialization.
The invariant is trivially true before the first iteration: when
i = 1, the set of arcs A is empty. Since there is no test before
t1, there is no test on which the tests {ti, . . . , tn} depend on.

Maintenance.
The body of the main loop works by creating a sequence
that removes ti from the reference schedule. Then, we run
the resulting sequence. For the tests {t1, . . . , ti→1}, there will
not be any failures since this is a prefix of the original test
suite, which is assumed to be passing. Therefore, we will
not enter the while-loop of lines 6–15, resulting in no arc
added to A, for such tests. For a test tj ≃ {ti+1, . . . , tn},
there are two cases that need to be considered, whether tj

passes or fails. As per our dependency model, if tj does
not depend on ti, then the exclusion of ti will not cause the
failure of tj . In other words, tj will pass, and no arc (tj , ti)
will be added to A in line 9. If on the other hand, tj does
depend on ti, then according to our dependency model, the
exclusion of ti will cause the failure of tj , which will trigger
the execution of the while-loop of lines 6–15 at some point,
resulting in arc (tj , ti) being added to A in line 9. Therefore,
incrementing i to the next iteration of the main loop (lines
3–16) will preserve the loop invariant.

Termination.
The main loop terminates when i = n. Because each loop
iteration increases i by one, we must have i = n at the time
of termination. Substituting n for i in the loop invariant, we
have that the set of arcs A will contain all and only the arcs
that represent the dependencies from tests in tn to test tn→1.
Since tn is the last test of the test suite, we can conclude that
we have found all the dependencies between the tests in the
test suite. Hence, the algorithm is correct.

3.2.2 Repair of PFAST

PFAST is correct provided that the test dependencies are
accurately modeled by the test dependency graph as defined
in Section 2. However, this might not be the case. For exam-
ple, a test tk might depend on one of two other tests, ti and
tj , but not necessarily on any one of them in particular. In
such a case, PFAST successfully removes, individually, both
ti and tj (line 4 of Algorithm 2) with no error, resulting in
a false negative, meaning failing to detect any dependency
tk ↑ ti or tk ↑ tj . As a consequence, one or more of the
parallel schedules obtained from the TDG will fail, requiring
a schedule repair operation.

We therefore complement PFAST with a validity check
and with a conservative repair algorithm that restores the
missing dependencies by reintroducing segments of test
sequences taken from the original order, until a passing
schedule is found. Specifically, the repair adds an arc to
the TDG (a possible dependency) between each failing test
and all the preceding tests (in the reference schedule). With
this TDG, we attempt to prune the newly added arcs using

a strategy similar to PRADET. In terms of complexity, the
repair has a cost of O(n2), so the overall worst-case perfor-
mance is not affected.

3.2.3 Parallelization of PFAST

One of the points of strength of PFAST is the possibility of
parallelizing the PFAST itself. In our experimentation, we
use an implementation based on a parallelized version of the
algorithm. The main idea is that the generation and execu-
tion of a single sequence of tests can happen independently
from other sequences. Hence, each sequence can run in a
separate thread. PFAST is therefore “trivially” parallelizable
on its main loop, as shown in Algorithm 3 (the only changes
w.r.t. Algorithm 2 are highlighted in red).

Algorithm 3: Parallelized PFAST

Input : T = →t1, . . . , tn↑, a test suite in its original
order.

Output: Test Dependency Graph
1 V ↓ {t1, . . . , tn}
2 A ↓ ≃
3 mtx ↓ NEWMUTEX()
4 parallel for i = 1 to n⇓ 1 do

5 S ↓ T \ →ti↑
6 results ↓ EXECUTESCHEDULE(S)
7 while GETFAILEDTESTS(results) ⇒= ≃ do

8 for j = i+ 1 to n do

9 if results[tj ] = FAIL then

10 ACQUIRE(mtx )
11 A ↓ A ⇑ {(tj , ti)}
12 RELEASE(mtx )
13 S ↓ S \ →tj↑
14 break

15 end

16 end

17 results ↓ EXECUTESCHEDULE(S)
18 end

19 end

20 (V,A) ↓ COMPUTETRANSITIVEREDUCTION(V,A)
21 return (V,A)

3.3 MEM-FAST Algorithm
The Memory-intensive Fast Web Testing (MEM-FAST) al-
gorithm builds on the idea that an optimal parallelizable
schedule consists of valid (passing) sequences of tests of
minimal length that cover all tests. The algorithm therefore
builds such sequences incrementally, by extending previ-
ously checked (passing) sequences with tests that have not
yet been covered. MEM-FAST starts with sequences of length
one by running each test in isolation and keeping the pass-
ing ones. Then, sequences of length two are valid (passing)
sequences obtained by concatenating valid sequences of
length one with tests that failed in the previous executions.
This process continues as long as there are failing tests.

This sequence-extension process tries to cover new tests
but does not in fact enumerates all possible sequences. In
fact, the extension of a sequence to incorporate test ti is
considered only if it immediately includes ti right after a
known prefix sequence. But what if ti depends on more tests
that have already been covered? In that case, the extension
algorithm would fail to cover ti. That is when MEM-FAST



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 6

Algorithm 4: MEM-FAST

Input : T = →t1, . . . , tn↑: test suite in its original order
Output: A test schedule {S1, S2, . . .}
Output: Test Dependency Graph G = (V,A)

1 V ↓ {t1, . . . , tn}
2 A ↓ ≃
3 P ↓ ≃
4 F ↓ ≃
5 for i = 1 to n do

6 results ↓ EXECUTESCHEDULE(→ti↑)
7 if results[ti] = PASS then

8 P ↓ P ⇑ {→ti↑}
9 end

10 else

11 F ↓ F ⇑ {ti}
12 end

13 end

14 r ↓ 1
15 while F ⇒= ≃ do

16 passed ↓ false

17 foreach sequence S ↔ P such that |S| = r ↗ k < i,
with S = →sj , . . . , sk↑ do

18 foreach ti ↔ F do

19 results ↓ EXECUTESCHEDULE(S · →ti↑)
20 if results[ti] = PASS then

21 P ↓ P ⇑ {S}
22 F ↓ F \ {ti}
23 A ↓ A ⇑ {(ti, sk)}
24 passed ↓ true

25 end

26 end

27 end

28 if passed ↗ tr ⇒↔ F then

29 r ↓ r + 1
30 continue;
31 end

32 foreach sequence S = →sj , . . . , sk↑ such that
sl ↔ {t1, . . . , ti↑1} with j ↘ l ↘ k and S has a prefix
in P increasingly ordered by length do

33 results ↓ EXECUTESCHEDULE(S · →tr↑)
34 if results[tr] = PASS then

35 P ↓ P ⇑ {S, S · →tr↑}
36 F ↓ F \ {tr}
37 A ↓ A ⇑ {(tr, sj), . . . , (tr, sk)}
38 r ↓ |S|+ 1
39 break

40 end

41 if results[sk] = PASS then

42 P ↓ P ⇑ {S}
43 end

44 end

45 end

46 (V,E) ↓ COMPUTETRANSITIVEREDUCTION(V,E)
47 return (V,E)

switches to an exhaustive search. Algorithm 4 shows the
pseudo-code of MEM-FAST.

The algorithm starts by building four sets (lines 1–13):
The set P of all the passing sequences derived from the ref-
erence schedule T , the set F of all the currently failing tests
from T , the set of vertices V and arcs A of a disconnected
test dependency graph. Initially, the algorithm considers
individual tests and therefore sequences of length 1 (lines
5–13). Then, starting from those initial sets P and F , the
algorithm tries to find progressively longer sequences that
cover more and more tests (lines 15–45). In the first for-

loop (lines 17–27), MEM-FAST tries to extend the passing
sequences by appending each test ti ≃ F to each sequence
S of length r in P . The value of r initialized at line 14,
represents the length of the schedule we try to append tests
to, at a given point. If the resulting schedule passes, we
can conclude that there is a direct dependency between
ti and the last test in S, therefore we add an arc in the
TDG (line 23). However, this first loop does not cover the
case in which a test depends on more than one test. We
solve this issue by introducing an exhaustive search over
all the combinations of passing schedules in lines 32–44.
By ordering the schedules by length during the exhaustive
search, we guarantee the minimality in the length of the
resulting parallel schedules.

The exhaustive search in lines 32–44 is guaranteed to find
a valid sequence that covers ti, but it is also the part of the
algorithm that requires exponential time and space. MEM-
FAST exhibits this exponential behavior in the presence of
many dependencies, while being very efficient when the
dependency graph is very sparse.

Figure 4 shows an example of execution of MEM-FAST
on the test suite ↓t1, t2, t3↔. After the execution of sequences
of length one (see lines 5–13 in Algorithm 4), the two sets P
and F are P = {↓t1↔} and F = {t2, t3} (see Figure 4.a).
With r = 1, MEM-FAST builds two candidate prefixes
↓t1, t2↔ and ↓t1, t3↔ in lines 17–27. As both are successful
(see Figure 4b), MEM-FAST adds the arcs (t2, t1) and (t3, t1)
to the TDG, skipping the exhaustive search (see lines 32–44
in Algorithm 4) and terminates the loop at line 15, returning
the resulting test dependency graph shown in Figure 4c.

(a) First sequences (b) t1 Suffixes (c) Resulting TDG

t3t1 t2 t1 t3 t1 t2
t1

t2

t3

Figure 4: MEM-FAST Applied on the Test Suite T =
↓t1, t2, t3↔

4 EXPERIMENTAL EVALUATION

We now present the results of the experiments that we
conducted to evaluate the algorithms and the overall test
optimization framework we propose. We conducted experi-
ments with existing real systems (i.e., Web applications and
database management systems) and their system-level tests
to assess the practical value of our proposed algorithms.
We also experimented with synthetic dependency graphs
to assess the asymptotic behaviors of the algorithms in
the presence of various types of dependency relations. At
a high-level, we set out to answer the following research
questions:
RQ1 (Dependency Detection) What is the execution cost of

each dependency detection technique?
RQ2 (Test Execution) What is the expected execution cost

saving brought by the parallelized schedules?
We analyze the execution cost of each method for de-

termining the dependencies between tests (RQ1) using both
synthetic and real system-level test suites.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 7

Metrics (RQ1). With synthetic test suites, we measure the
execution cost by counting the number of schedules that
each dependency detection algorithm has to run to produce
its final output, as well as the number of tests in such sched-
ules. Indeed, with synthetic tests, each test has the same
execution cost (i.e., no execution cost), hence the number of
schedules (and test runs) gives a reliable indication of the
computation requirements of each dependency detection
algorithm. We also vary the number of tests in each test
suite, to analyze how the execution cost of each algorithm
increases with the test suite size. With real system-level
test suites, beyond measuring the number of schedules and
their tests, we measure the actual clock time each algorithm
takes to complete the dependency detection task, because
each test has its own runtime (typically in the order of
seconds) and each schedule execution includes the cost of
setting up the system (e.g., a Web application or a database
management system like the MySQL server).

With the second research question (RQ2), we study the
benefit of the parallelization framework for testing. In par-
ticular, we analyze the speed-up of the parallelizable sched-
ules generated by each dependency detection technique, as
compared with the sequential execution of a given test suite
in its original order.
Metrics (RQ2). In the case of synthetic tests, we simply
measure the number of test cases in the longest schedule ex-
tracted/generated by each dependency detection algorithm,
and compare it against the given test suite size. With real
system-level test suites, we measure the execution time of
the extracted/generated schedule with the highest runtime,
assuming that we can parallelize all the schedules. We then
compare such runtime with the sequential runtime of the
original test suite.

4.1 Subjects
We conducted our experiments using two different families
of subjects, namely synthetic tests, and real system tests.
Synthetic tests allow us to control for important factors,
such as the test suite size and the test dependency graph
connectivity and shape, and therefore give us a more general
and theoretical perspective. Real systems with their system
tests give us indications on the expected performance in
practical cases. For completeness, we have also evaluated
PFAST and MEM-FAST on the unit test subjects used to
evaluate the original version of PRADET [4]. We report the
results of the comparison in the appendix.

4.1.1 Synthetic Tests
We created random test dependency graphs using three
distinct algorithms employed in random graph genera-
tion, namely Barabási–Albert [7], Erdős–Rńyi [8], and Out-
Degree-3-3. “Synthetic” tests are nodes of such test depen-
dency graphs, with unitary execution cost (they are actually
not executed at all).

The Barabási–Albert [7] strategy creates graphs where a
few nodes have a much higher number of connections than
other nodes. In particular, the probability of a new node tj

being connected to an existing node ti, is proportional to the
degree of node ti (i.e., the sum of its incoming and outgoing
edges), hence nodes with a higher degree are more likely

Table 1: Overview of Web applications and their test suites.
The first macro-column (WEB APP) show the version of
the corresponding Web application and the respective Lines
of Code (LOC). The second macro-column (TEST SUITES)
shows the number of tests in the test suite of the corre-
sponding Web App (#), as well as the average number of
LOC in each test divided by the total number of LOC.

APP WEB APP TESTS SUITES

Version LOC # LOC (Avg/Tot)

addressbook [9] 8.0.0 16,383 27 48/1,355
claroline [10] 1.11.10 352,968 40 46/1,834
expresscart [11] 1.1.19 1,383,562 27 37/1,008
mantisbt [12] 1.1.8 211,265 41 43/1,748
mrbs [13] 1.4.9 35,902 22 51/1,121
ppma [14] 0.6.0 578,858 23 52/1,186

Total 2,578,938 201 46/8,252

to attract connections. This model is also called preferential
attachment. For instance, the probability pi that a node is
connected to node ti is given by pi = di/

∑i→1
j=1 dj where

di is the degree of node ti, and the sum is made over the
degrees of all the nodes generated before ti.

The Erdős–Rényi [8] strategy establishes that each node
ti is connected to any other node tj with a certain, fixed
probability that is independent of ti or tj . This model is in-
tended to generate graphs with no preferential attachment,
and therefore no particular structure. The last category of
graph generation algorithm is Out-Degree-3-3, which we
designed to generate graphs where each node is connected
with exactly three nodes at random. Such strategy ensures
that each node in the test dependency graph has the same
average degree.

The three categories of graph generation algorithms
cover a diverse range of graph structures, representing dif-
ferent kinds of test dependency graphs that might character-
ize real system-level test suites: respectively, (1) TDGs with
a few central nodes on which several other nodes depend;
(2) unstructured TDGs where nodes have the same average
connectivity; (3) TDGs where the number of dependencies
is assumed to be limited, to 3 in our case.

Table 2: Overview of MySQL test suites by their respective
functionalities. The column “# Tests” shows the number of
tests for each functionality, while the column “Big Tests”
shows the test suites that contain at least one computation-
ally expensive test case (or “big” test).

Functionality # Tests Big Tests

audit null 15 No
collations 32 No
jp 111 No
json 19 No
gcol 34 Yes
gis 70 No
innodb zip 26 Yes
information schema 8 No



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 8

(a) Random graphs - Barabási–Albert

0

20

40

60

80

100

120

 0  100  200  300  400  500

# 
Sc

he
du

le
 R

un
s

(T
ho

us
an

ds
)

Test Suite Size

Pғᴀsᴛ
PʀᴀDᴇᴛ

(b) Random graphs - Erdős–Rényi

0

20

40

60

80

100

120

 0  100  200  300  400  500

# 
Sc

he
du

le
 R

un
s

(T
ho

us
an

ds
)

Test Suite Size

Pғᴀsᴛ
PʀᴀDᴇᴛ

(c) Random graphs - Out-Degree-3-3

0

20

40

60

80

100

 0  100  200  300  400  500

# 
Sc

he
du

le
 R

un
s

(T
ho

us
an

ds
)

Test Suite Size

Pғᴀsᴛ
PʀᴀDᴇᴛ

Figure 5: Asymptotic behavior of PFAST and PRADET in terms of number of schedule runs over the test suite size.

4.1.2 Real System-level Test Suites
Web applications. We selected six open-source Web ap-
plications used in previous Web testing research [15], [5],
[16], [17]. Each subject is accompanied by a JUnit test suite,
which includes 21—41 Selenium [18] test cases. Table 1
shows our subject systems, including their names, versions,
lines of code (LOC) of both the Web applications and the
associated test suites (measured using cloc [19]), as well as
the number of tests in each test suite.
MySQL. We selected eight test suites for as many function-
alities from the MySQL server test suite [20]. In the selection
process we tried to cover a good range of test suite sizes.
In particular, the smallest size is 8 (information schema) and
the largest size is 111 (jp). Additionally, we also included
test suites containing tests marked as “big” [21]. In MySQL
terminology, those tests either take a very long time to run
or use considerable resources, making them unsuitable for
a normal test suite run [21]. Table 2 shows our selected test
suites, also including those that contain at least a “big” test.

4.2 Experimental Procedure

We now detail the procedure we used to run the experi-
ments and collect the corresponding metrics for both syn-
thetic and system-level test suites.

Table 3: Number of random graphs generated by each
graph generation strategy for each dependency detection
technique.

# Graphs Techniques

Erdõs–Rńyi 300 PRADET, PFAST, MEM-FAST

Erdõs–Rńyi 2500 PRADET, PFAST

Barabási–Albert 2500 PRADET, PFAST

Out-Degree-3-3 2500 PRADET, PFAST

4.2.1 Synthetic Tests
Regarding dependency detection (RQ1), for each random
graph generation strategy, we varied the number of nodes
n (i.e., the number of tests in the test suite) from 2 to 492 in
steps of 10. For each value of n, we generated 50 random
graphs, resulting in a total of 2500 random graphs for each
technique. For the Erdős–Rényi strategy we employed a

fixed probability set to (log n)/n so that the expected num-
ber of edges is on the order of O(n log n). Given that MEM-
FAST exhibits exponential growth with the increasing num-
ber of schedules as n increases, we examined its behavior by
limiting n to 50. We generated 50 random graphs for each of
six different fixed probabilities (0.0001, 0.0005, 0.001, 0.005,
0.01, and 0.02) using the Erdős–Rényi strategy, resulting
in a total of 300 random graphs. For graphs consisting of
50 nodes and higher probabilities, MEM-FAST manifests its
(expected) exponential behavior, failing to complete within
a 30-minute time limit. With this algorithm, we only used
the Erdős–Rényi strategy, as we can control the number of
edges in the random graph, as opposed to Barabási–Albert
and Out-Degree-3-3, and we studied the dependency cost
of each algorithm (i.e., MEM-FAST, PRADET and PFAST)
when the number of connections in the graph varies. Table 3
summarizes the number of generated random graphs for
each dependency detection technique.

Regarding test execution (RQ2), for the techniques that
output a test dependency graph, namely PRADET and
PFAST, we generated minimal parallel test schedules au-
tomatically by traversing the TDG to obtain the transitive
closure of the dependency relations.

4.2.2 Real System-level Test Suites

Web Test Suites. Regarding Web application system-level
test suites, for dependency detection (RQ1), we configured our
execution environment to run both the Web application and
the associated test suite in separate Docker containers. Each
schedule’s execution requires the setup of the initial state of
the Web application; to reset the state across schedule exe-
cutions, we simply delete and recreate the Web application
containers. We used the parallelized version of PFAST in our
experiments; we configured PFAST and MEM-FAST to run
at most 12 instances of the Web application under test at
the same time (i.e., at most 12 schedules can be executed
in parallel) 1. All the experiments have been executed on
a virtual machine running on Ubuntu 22.04.3 LTS with 16
Intel(R) Xeon(R) Gold 5218 CPUs and 32GB of RAM. To
make the comparison with PRADET fair, we spawned the
same number of instances of the Web application under
test as PFAST and MEM-FAST. Even though PRADET cannot

1. The 12 instances account for three quarters of the total number of
CPU cores in the VM we used for the experiments. For mrbs we used 4
parallel instances, to reduce the impact of flakiness.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 9

(a) # Test runs

8

6e+01

5e+02

4e+03

3e+04

3e+05

2e+06

2e+07

1e+08

1e+09

0.0005 0.001 0.005 0.01 0.02

# 
Te

st
 R

un
s 

(L
og

 S
ca

le
)

Probability

Pғᴀsᴛ
PʀᴀDᴇᴛ

Mᴇᴍ-Fᴀsᴛ

(b) # Schedule runs

8

6e+01

5e+02

4e+03

3e+04

3e+05

2e+06

2e+07

1e+08

0.0005 0.001 0.005 0.01 0.02

# 
Sc

he
du

le
 R

un
s 

(L
og

 S
ca

le
)

Probability

Pғᴀsᴛ
PʀᴀDᴇᴛ

Mᴇᴍ-Fᴀsᴛ

Figure 6: Dependency detection cost of PFAST, PRADET and MEM-FAST, for Erdős-Rényi randomly generated graphs.

execute schedules in parallel, it benefits from having mul-
tiple running instances of the application, to avoid waiting
for the setup of the application each time it requests the
execution of a schedule. This way, the initial setup cost for
each schedule becomes negligible for PRADET.

To account and compensate for flakiness, i.e., the ten-
dency of some tests to fail non-deterministically [22], we
manually fixed each test suite before running the depen-
dency detection algorithms. In particular, we added appro-
priate delays in synchronization points, as Web test cases are
affected by timing issues (e.g., an element is clicked before
it is fully loaded on the page, causing the test to break).
This did not completely eliminate the problem of flaky tests,
especially with our detection algorithms, i.e., PFAST and
MEM-FAST, that run test suites in parallel. We therefore
executed each algorithm ten times and analyzed results
across multiple runs. For each run of each dependency
detection technique, we set a maximum time budget of 24h.

Regarding test execution (RQ2), for PRADET, PFAST and
MEM-FAST we extracted the parallelizable schedules from
the resulting TDG. When executing the resulting schedules
for each technique, we configured the tool to execute at most
6 schedules in parallel.
MySQL Test Suites. Regarding MySQL system-level test
suites, for dependency detection (RQ1) we used the same
experimental setup as the one used for the Web application
test suites. In practice, we use the same hardware, we run
the MySQL test suites within Docker containers, and we
execute each dependency detection algorithm ten times with
a timeout of 24h. MySQL test suites are more demanding in
terms of resources as compared to the Web application test
suites. We therefore configure the algorithms to use at most
8 instances of MySQL at the same time (instead of the 12
instances we used for Web applications).

Regarding test execution (RQ2), we extracted the paral-
lelizable schedules from the resulting TDGs as we did for
Web test suites. We then executed the sequential test suites
and the parallelizable schedules of PRADET, PFAST and
MEM-FAST while running the system under test with Val-
grind [6], enabled for those test suites supporting it (namely,
those with no “big” tag). MySQL allows to use Valgrind
as a memory debugging and checker tool, to ensure that

a release does not introduce any memory-related bugs or
vulnerabilities. In particular, Valgrind increases the running
time of a test case by a factor of 10 [21].

4.3 Results

4.3.1 RQ1 (Dependency Detection)
Synthetic Tests. Regarding synthetic tests, Figure 5 shows
the asymptotic behavior of PRADET and PFAST in terms of
number of schedule runs as the test suite size increases (we
report the plots in terms of number of test runs, which show
a similar trend, in our replication package). Each point in the
figures is a box plot showing the variation in the number
of schedule runs for the 50 generated random graphs of
the given size. In every random graph generator category,
the cost of PRADET surges with larger test suite sizes,
whereas PFAST’s growth is markedly slower. The disparity
between PRADET and PFAST varies depending on the spe-
cific random graph generator used. Specifically, considering
the Barabási–Albert strategy, PFAST and PRADET starts to
diverge with a small test suite size (i.e., < 30), while with
Erdős–Rényi and Out-Degree-3-3 , the divergence point pro-
gressively moves towards higher test suite sizes (i.e., ⇐ 50
and ⇐ 100 respectively). Even in the worst case scenario,
i.e., Out-Degree-3-3, the number of schedule runs for PFAST
is ⇐ 3 times smaller than PRADET’s.

Figure 6 shows how the cost of PFAST, PRADET, and
MEM-FAST vary when the probability of the Erdős–Rényi
random generator increases (i.e., when the generated graphs
become progressively more connected). On the left-hand
side, the cost is represented by the number of test runs,
while on the right-hand side by the number of schedule
runs. For each probability value, the figures show three box
plots, i.e., one for each technique, showing the cost variation
for 50 randomly generated graphs in a logarithmic scale. In
terms of both test runs and schedule runs, both PRADET and
PFAST have a constant cost, as they do not depend on how
connected is the underlying test dependency graph. On the
other hand, MEM-FAST is exponentially more expensive the
more connected the test dependency graph becomes, both
in terms of number of test runs and number of schedule
runs. However, MEM-FAST is significantly more efficient



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 10

Table 4: Dependency Detection (RQ1) and Test Execution (RQ2) for real system-level Web test suites (first 8 rows) and
MySQL test suites in all subjects (last 10 rows). The results are averaged across ten runs. The “OOB” symbol means
Out of Budget, i.e., the technique exhausted its 24h budget without terminating the dependency detection process (when
computing the median we did not consider the rows with the OOB symbol). We measured the execution time of MySQL
test suites (“Execution Time” column) while running Valgrind [6] (except for gcol and innodb zip).

RQ1 (Dependency Detection) RQ2 (Test Execution)

# Deps. Dependency Detection
Found # Schedules Runs Time (s) Execution Time (s)

Subjects P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

Se
qu

en
tia

l

P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

addressbook [9] 31 30 27 320.0 90.0 3,363.0 7,241.0 701.7 11,191.9 62.1 58.7 59.5 44.5
claroline [10] 42 42 42 751.0 138.0 8,143.1 26,801.5 1,436.6 36,071 104.9 60.4 59.4 58.8
expresscart [11] 22 22 17 342.0 67.0 218.4 16,732.9 1,042.6 1,402.5 123.0 41.5 41.2 35.7
mantisbt [12] 35 35 33 776.0 143.0 347.0 42,583.5 2,466.1 1,784.1 217.0 157.5 159.8 91.2
mrbs [13] 21 21 21 198.0 98.0 968.0 6,743.5 1,153.6 5,226.1 75.1 45.0 46.1 36.8

W
eb

Te
st

Su
ite

s

ppma [14] 22 22.4† 18 229.0 75.0 176.1 5,881.3 749.8 606.3 68.9 52.1 48.8 32.1
Median 26.5 26.2 24.0 331.0 94.0 657.5 11,987.0 1,098.1 3,505.1 90.0 55.4 54.1 40.6

audit null 0 0 0 105.0 29.0 15.0 6,315.3 265.7 95.5 1,400.4 463.4 464.4 466.0
collations OOB 0 0 OOB 63.0 32.0 OOB 2,102.6 253.2 17,889.5 OOB 872.1 874.4
jp OOB 0 0 OOB 221.0 111.0 OOB 6,396.0 682.0 12,052.7 OOB 1,077.9 1,066.3
json 0 0 0 171.0 37.0 19.0 27,932.9 847.7 146.9 8,005.3 2,187.7 2,184.8 2,187.0
gcol↓ OOB 0 0 OOB 67.0 34.0 OOB 3,766.4 493.3 702.3 OOB 396.2 398.6
gis OOB 0 0 OOB 139.0 70.0 OOB 2,763.0 428.0 6,708.6 OOB 786.1 789.9
innodb zip↓ OOB 0 0 OOB 51.9 26.0 OOB 4,755.6 372.2 1,063.7 OOB 291.1 289.9

M
yS

Q
L

Te
st

Su
ite

s

information schema 0 0 0 28.0 15.0 8.0 1,490.5 127.0 54.7 1,287.7 473.1 458.1 461.6
Median OOB 0 0 OOB 57.5 29.0 OOB 2,432.8 312.7 4,054.5 OOB 625.2 628.0

↓ Test suites with “big” tests (see Table 2); test execution (RQ2) with Valgrind not supported;
† In some runs flakiness triggers the recovery of a few false positive dependencies.

than PFAST and PRADET when the test dependency graph
is sparse (i.e., from probability 0.0005 to probability 0.005).
This is evident in the number of test runs (left-hand side
of Figure 6), where MEM-FAST executes ⇐ 30↘ fewer tests
than PRADET and PFAST. In the number of schedules,
PFAST and MEM-FAST are comparable for sparsely con-
nected graphs, as MEM-FAST executes single-test schedules,
while PFAST’s schedule runs include many more tests.
Web Test Suites. Regarding Web test suites, the first 8 rows
of Table 4 show the results in terms of RQ1 (Dependency De-
tection) and RQ2 (Test Execution), averaged across ten runs.
Columns 5–7 (number of schedule runs) and Columns 8–10
(dependency detection time in seconds) show the results for
RQ1 for all the six test suite subjects.

Columns 5–6 show that PFAST is significantly less costly
than PRADET in terms of number of schedule runs. The
improvements range from 2↘ (mrbs) to 5↘ (claroline). This
reduction directly translates into a much lower dependency
detection time (Columns 7–8) for PFAST. The least difference
is with ppma, where PFAST takes 12 minutes on average to
complete the task while PRADET takes 1 hour and 38 min-
utes. With mantisbt we instead observe the highest difference
between PFAST and PRADET, from 41 minutes on average to
almost 12 hours. On the other hand, MEM-FAST (Column 7)
generates many more schedules as compared to PRADET,
yet it is faster than PRADET in terms of dependency detec-
tion time in the majority of subjects (i.e., 4 out of 6). The
reason is twofold: schedules generated by MEM-FAST are
generally very short and MEM-FAST executes those sched-
ules in parallel, while PRADET executes them sequentially.
Overall, PFAST outperforms MEM-FAST by a large margin

for 4 out of 6 test suites, both in terms of number of schedule
runs and dependency detection time, since test dependency
graphs for such test suites are not sparsely connected.

MySQL Test Suites. Regarding the MySQL system-level test
suites, the last 10 rows of Table 4 show the results in terms
of RQ1 and RQ2. In this case the number of dependencies
found by each algorithm is the same (Columns 2–4). MEM-
FAST executes the least amount of schedules (Columns 5–7)
in all subjects, while PRADET, when it does not time out,
executes from 2↘ to 4↘ more schedule than PFAST and from
3.5↘ to 9↘ more schedules than MEM-FAST. MEM-FAST is
also the most efficient in terms of dependency detection time
with a runtime of only 312 seconds based on the median
across all subjects. On the contrary, PRADET runs out of
budget in most of the subjects (i.e., 5 out of 8 subjects),
while taking much longer than PFAST and MEM-FAST in
the remaining cases. This result confirms that MEM-FAST is
quite efficient when the dependency graph is sparse, while
PFAST remains a competitive alternative even in this context.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 11

(a) Barabási–Albert

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  100  200  300  400  500

Lo
ng

es
t S

ch
ed

ul
e 

Te
st

 S
ui

te
 S

ize
 R

at
io

Test Suite Size

Pғᴀsᴛ
PʀᴀDᴇᴛ

(b) Erdős–Rényi

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  100  200  300  400  500

Lo
ng

es
t S

ch
ed

ul
e 

Te
st

 S
ui

te
 S

ize
 R

at
io

Test Suite Size

Pғᴀsᴛ
PʀᴀDᴇᴛ

(c) Out-Degree-3-3

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  100  200  300  400  500

Lo
ng

es
t S

ch
ed

ul
e 

Te
st

 S
ui

te
 S

ize
 R

at
io

Test Suite Size

Pғᴀsᴛ
PʀᴀDᴇᴛ

Figure 7: Asymptotic behavior of PFAST and PRADET, in terms of ratio between the longest schedule and the test suite size.
As both techniques always output the optimal test dependency graph, the box-plots of PFAST and PRADET completely
overlap.

RQ1 (Dependency Detection): Overall, in both synthetic
and real test suites, PFAST outperforms PRADET in terms
of dependency detection cost. Synthetic tests show that
PFAST scales better than PRADET when the test suite
size increases, and real system-level tests show that, in
practice, PFAST takes from 6 to 19↘ less time than PRADET
to detect dependencies on Web test suites, while it takes
from 11 to 40↘ less on MySQL test suites. Moreover, in
synthetic tests, MEM-FAST significantly outperforms both
PRADET and PFAST when the underlying test dependency
graph is sparse. This is confirmed by the MySQL test
suites results, where there are no dependencies between
tests, and MEM-FAST is the most efficient algorithm.

4.3.2 RQ2 (Test Execution)
Synthetic Tests. Concerning synthetic tests, both PRADET
and PFAST output the same test dependency graph for all
categories of random graph generators, which corresponds
to the underlying (optimal) test dependency graph. This also
applies to MEM-FAST, whose longest schedule corresponds
to the longest schedule of the optimal test dependency
graph. For PFAST and PRADET we report the ratio between
the longest schedule and the test suite size, as the test suite
size increases (Figure 7). For each test suite, figures show the
box plots with the ratios given the 50 randomly generated
graphs. As both techniques always output the optimal test
dependency graph, the box-plots of PFAST and PRADET
completely overlap. Figure 7 shows that for all categories of
random graph generators, the ratio between longest sched-
ule and test suite size, decreases with the test suite size. In
particular, for the Barabási–Albert strategy (Figure 7.a), we
have the highest reduction, converging to 10% of the length
of the test suite; for Out-Degree-3-3 (Figure 7.b), the ratio
decreases less quickly, asymptotically converging to a 30%
reduction on average. On the other hand, for Erdős–Rényi
, the reduction stays around 50%, as the graphs generated
with such strategy have a totally random structure.
Web Test Suites. Regarding Web test suites, Columns 2–4 of
Table 4 show the number of dependencies in the resulting
test dependency graphs found by each technique for each
subject. We observe that all techniques output a similar
test dependency graph also with real Web test suites (i.e.,
the first 8 rows). In particular, in two out of six cases

(claroline and mrbs), the number of dependencies is the same
for each technique, across all the runs; in the remaining
cases, MEM-FAST outputs a test dependency graph with
less dependencies than PRADET and PFAST. This is because
MEM-FAST tries to build valid schedules of minimal length,
resulting in a test dependency graph with a smaller number
of dependencies.

Columns 12–14 of Table 4, show the execution time
(in seconds) of the parallelized schedules produced by
PRADET, PFAST and MEM-FAST, while Column 11 shows
the sequential execution of the test suite. We observe that,
based on the median, PRADET and PFAST achieve compara-
ble reduction w.r.t. the sequential execution for all the sub-
jects (i.e., 1.5↘ saving). MEM-FAST, on the other hand, has
an advantage w.r.t. PRADET and PFAST (i.e., a 2↘ saving),
since MEM-FAST’s parallelized schedules are shorter.
MySQL Test Suites. Considering MySQL system-level test
suites, all techniques output the same test dependency
graph in all runs, i.e., a test dependency graph with no
dependencies (it should be noted that a-priori one cannot
assume the absence of dependencies in any stateful, com-
plex system such as MySQL).

When executing MySQL test suites with Valgrind, we
observe a significant reduction of the execution time w.r.t.
the sequential execution. Such reduction is equivalent for
all dependency detection algorithms, i.e., PRADET, PFAST
and MEM-FAST, as they all output the same test dependency
graph (the average and the median of PRADET differ from
those of PFAST and MEM-FAST because they are computed
on five less subjects, while the average and the median of
PFAST and MEM-FAST are approximately the same). Even
when considering test suites executed without Valgrind,
namely gcol and innodb zip, the reduction is significant,
ranging respectively from 1.7↘ to 3.6↘. Moreover, the re-
duction is much more pronounced than with Web test
suites, ranging from 2 (gcol) to 20↘ (collations). Practically,
the execution of the test suite is reduced from 1 hour to
10 minutes, which allows for a significant time saving for
each regression run. Moreover, when considering PFAST and
MEM-FAST, the time saving justifies the cost of executing
dependency detection, which respectively takes, based on
the median across all subjects, 43 minutes and 5 minutes,
respectively. In both cases, a single test suite execution is
sufficient to offset and start gaining from the cost of de-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 12

pendency detection. However, this is not true for PRADET,
where dependency detection takes more than 24 hours for
more than half of the subjects.

RQ2 (Test Execution): Overall, the schedules generated
by PRADET, PFAST and MEM-FAST are comparable both
in terms of length, for synthetic tests, and in terms of
execution time, for real system-level test suites. The re-
duction w.r.t. the sequential execution for Web test suites
ranges from 1.5↘ to 2↘. However, PFAST achieves the
same reduction by detecting dependencies up to orders
of magnitude faster than PRADET. For MySQL test suites,
the reduction w.r.t. the sequential execution is even more
pronounced, reaching a 6↘ saving, lowering the execution
time from 1 hour to 10 minutes. A single test execution
offsets the dependency detection cost of PFAST and MEM-
FAST, while PRADET requires many more executions,
since it takes more than 24 hours in most of the subjects.

4.4 Threats to Validity
The limited number of subjects we used, poses an external
validity threat. Although more subjects are needed to fully
assess the generalizability of our results, we used both
synthetic and real system-level test suites to evaluate our
approach. Synthetic test cases allow studying how the de-
pendency detection algorithms scale when varying the test
suite size. In such context, we used three different categories
of random graph generation algorithms to generate test
dependency graphs with different structures. For system-
level test suites, we selected two types of systems, i.e., Web
applications and a database management system, namely
MySQL. For Web applications, we considered six open-
source test suites used in previous Web testing research,
where Web applications spanning different domains were
tested. For MySQL, we selected eight test suites with vary-
ing test suite sizes and types of tests (i.e., test suites with
and without “big” tests (see Table 2)).

The flakiness of test cases poses an internal validity threat,
especially in Web test suites. We addressed this issue by
manually adding appropriate delays in Web test suites
before running the dependency detection algorithms. More-
over, we executed each approach, both for Web and MySQL
test suites ten times to account for the possible flakiness
introduced by the parallelized execution of the schedules.

With respect to reproducibility, we make our replication
package publicly available, ensuring our evaluation is re-
peatable and our results reproducible. In particular, we
distribute in different repositories the tools to replicate our
experiments with synthetic tests [23], and those to replicate
the experiments on real system-level tests suites [24], [25].

5 RELATED WORK

The problem of test dependency has been extensively stud-
ied in the literature, especially within the context of the test
flakiness problem [26], [27], [28], [29], [30], [31], [32], [22],
[33], [34]. Indeed, a recent survey by Parry et al. [22] reports
that order-dependent tests constitute up to 16% of flaky bug
reports, while Luo et al. [32] empirically observed that test
dependency is among the three most commonly observed
categories of flaky tests.

Researchers have proposed different heuristics to auto-
matically detect dependencies in a test suite [4], [35], [2],
[36]. Bell and Kaiser [35] proposed the tool VMVM, that
isolates unit tests by resetting the state of the program
under test before each test execution. The output of their
approach is just a flag, signalling the occurrence of a test
dependency problem: no TDG is computed. Zhang et al. [2]
developed DTDETECTOR, which detects dependencies by
exhaustively executing all possible sequences of k tests, a
parameter configurable by the user. The tool ELECTRICTEST
by Bell et al. [36] extracts the set of dependencies between
tests by conducting a data-flow analysis to identify read and
write operations on the Java objects shared between tests.
PRADET [4] uses ELECTRICTEST to extract an approximated
set of dependencies, which are then validated individually
with dynamic analysis. The work of Li et al. [37], and Wei
et al. [38] is also related to what we present, as it concerns
approaches to detect order-dependent tests.

Our approach follows the same principles of PRADET,
i.e., validating dependencies by executing selected sched-
ules. However, our approach is designed for system-level
tests, which makes all existing approaches inapplicable,
because exhaustive execution of all k-bounded sequences
would be too expensive and data-flow analysis cannot be
carried out on large Web applications. In fact, in system-
level Web testing the state of the application is distributed
across multiple tiers/components, and it is generally dif-
ficult to control and trace it. For instance, static data-flow
analysis across multiple tiers is infeasible in practice. Hence,
we resort to dynamic dependency detection algorithms,
which either incrementally add the dependencies associated
to each test (PFAST) or directly create a set of parallelizable
schedules (MEM-FAST). Detecting order-dependent tests
also differs from our ultimate goal in a fundamental way.
Indeed, this line of work is intended to find some dependen-
cies between tests (binary order relations). By contrast, our
goal is to obtain a maximally parallel schedule for the tests,
which must be consistent with all the dependencies.

In the field of system-level Web test suites, Biagiola
et al. [5] proposed TEDD, which uses NPL and string
analysis techniques to filter the likely false dependencies
of an approximated test dependency graph. More recently
STILE by Olianas et al. [16], [39] addressed the problem of
parallelizing the schedules extracted from a test dependency
graph, respecting the dependencies between tests and, at the
same time, avoiding repeated executions of the same test
sequence prefixes. Similarly to Biagiola et al. [5] and Olianas
et al. [16], [39], we focus on end-to-end Web test suites,
but contrary to TEDD [5], our approach does not make any
assumption on the quality of the test names. Moreover, we
address the problem of detecting dependencies in end-to-
end Web test suites, while STILE [16], [39] starts from a
validated test dependency graph.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced two novel test-dependency
detection algorithms for system-level test suites, namely
PFAST and MEM-FAST. We evaluated the practical bene-
fits of such approaches using existing systems and their
associated system-level test suites (e.g., Web applications



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 13

and a database management system like MySQL). We also
assessed their asymptotic behaviors using synthetic test
dependency graphs, covering a diverse range of graph
structures. Our results show that PFAST, PRADET, and
MEM-FAST achieve comparable degrees of parallelization
for both synthetic and real end-to-end Web test suites.
However, PFAST is significantly faster than PRADET in the
dependency detection task both asymptotically, when exe-
cuted on synthetic test dependency graphs, and practically,
with real Web test suites, taking, on average, one order
of magnitude less time. Moreover, MEM-FAST significantly
outperforms both PRADET and PFAST when the underlying
test dependency graph is extremely sparse, as in sparse
synthetic graphs and in MySQL test suites.

In our future work, we plan to combine the benefits of
MEM-FAST and PFAST, by implementing a hybrid algorithm
that heuristically detects whether the test dependency graph
is sparse and triggers the most efficient algorithm. For
instance, in a continuous integration process, developers
could run PFAST to determine the sparsity of the dependen-
cies given the initial version of the test suite. If the depen-
dency graph is sparse, developers should use MEM-FAST in
subsequent releases to update the dependency graph when
the test suite changes. We also plan to implement a dis-
tributed version of PFAST, to further improve its efficiency.

ACKNOWLEDGEMENTS

This work was supported in part by Swiss National Science
Foundation with project Toposcope (grant n. 214989).

REFERENCES

[1] F. Dobslaw, R. Wan, and Y. Hao, “Generic and industrial scale
many-criteria regression test selection,” J. Syst. Softw., vol. 205,
p. 111802, 2023.

[2] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam, M. D. Ernst,
and D. Notkin, “Empirically revisiting the test independence
assumption,” in Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, (New York, NY, USA),
pp. 385–396, ACM, 2014.

[3] J. Bell, G. E. Kaiser, E. Melski, and M. Dattatreya, “Efficient
dependency detection for safe java test acceleration,” Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015.

[4] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency de-
tection,” in 11th IEEE International Conference on Software Testing,
Verification and Validation, ICST 2018, Västerås, Sweden, April 9-13,
2018, pp. 1–11, IEEE Computer Society, 2018.

[5] M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella, “Web
test dependency detection,” pp. 154–164, ACM, 2019.

[6] “Valgrind..” https://valgrind.org/info/, 2025.
[7] A.-L. Barabási and R. Albert, “Emergence of scaling in random

networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.
[8] P. L. Erdos and A. Rényi, “On random graphs. i.,” Publicationes

Mathematicae Debrecen, 2022.
[9] “Simple, web-based address and phone book .” https://

sourceforge.net/projects/php-addressbook/, 2017.
[10] “Claroline. open source learning management system..” https://

github.com/claroline/Claroline, 2019.
[11] “A fully functioning Node.js shopping cart with Stripe, PayPal,

Authorize.net, PayWay, Blockonomics, Adyen, Zip and Instore
payments..” https://github.com/mrvautin/expressCart, 2023.

[12] “Mantis Bug Tracker (MantisBT) .” https://github.com/
mantisbt/mantisbt, 2014.

[13] “The Meeting Room Booking System (MRBS) is a PHP-based
application for booking meeting rooms..” https://github.com/
meeting-room-booking-system/mrbs-code, 2024.

[14] “Php password manager.” https://github.com/pklink/ppma,
2017.

[15] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-replay
vs. programmable web testing: An empirical assessment during
test case evolution,” in 2013 20th Working Conference on Reverse
Engineering (WCRE), pp. 272–281, 2013.

[16] D. Olianas, M. Leotta, F. Ricca, M. Biagiola, and P. Tonella, “STILE:
a tool for parallel execution of E2E web test scripts,” in 2021
14th IEEE Conference on Software Testing, Verification and Validation
(ICST), pp. 460–465, 2021.

[17] D. Olianas, “STILE test suite parallelizer replication package,”
2023. GitHub repository.

[18] B. Garcia, Hands-On Selenium WebDriver with Java. O’Reilly Media,
Inc., 2022.

[19] A. Danial, “cloc: Count Lines of Code.” https://github.com/
AlDanial/cloc, 2023. Accessed: 11-12-2023.

[20] “MySQL Server, the world’s most popular open source database..”
https://github.com/mysql/mysql-server, 2025.

[21] “mysql-test-run.pl — Run MySQL Test Suite..” https:
//dev.mysql.com/doc/dev/mysql-server/9.1.0/PAGE MYSQL
TEST RUN PL.html, 2025.

[22] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A
survey of flaky tests,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 31, no. 1, pp. 1–74, 2021.

[23] “End-to-End testing synthtetic experiments.” https://github.
com/pako-23/gtdd-synthetic-tests-simulator, 2024. Accessed: 18-
03-2024.

[24] “GTDD.” https://github.com/pako-23/gtdd, 2024. Accessed: 18-
03-2024.

[25] “End-to-End web test suites experiments.” https://github.com/
pako-23/gtdd-benchmarks, 2024. Accessed: 18-03-2024.

[26] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siem-
borski, and J. Micco, “Taming google-scale continuous testing,”
in Proceedings of the 39th International Conference on Software En-
gineering: Software Engineering in Practice Track, ICSE-SEIP ’17,
(Piscataway, NJ, USA), pp. 233–242, IEEE Press, 2017.

[27] K. Herzig and N. Nagappan, “Empirically detecting false test
alarms using association rules,” in Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 2, ICSE ’15,
(Piscataway, NJ, USA), pp. 39–48, IEEE Press, 2015.

[28] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the
cost of regression testing in practice: A study of java projects
using continuous integration,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE ’17,
(New York, NY, USA), pp. 821–830, ACM, 2017.

[29] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-
offs in continuous integration: Assurance, security, and flexibility,”
in Proceedings of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE ’17, (New York, NY, USA), pp. 197–
207, ACM, 2017.

[30] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Mari-
nov, “Deflaker: Automatically detecting flaky tests,” in Proceedings
of the 40th International Conference on Software Engineering, ICSE ’18,
(New York, NY, USA), pp. 433–444, ACM, 2018.

[31] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting as-
sumptions on deterministic implementations of non-deterministic
specifications,” in Proceedings of the 2016 IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST ’16, pp. 80–
90, April 2016.

[32] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of flaky tests,” in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2014, (New York, NY, USA), pp. 643–653, ACM, 2014.

[33] S. Habchi, M. Cordy, M. Papadakis, and Y. L. Traon, “On
the use of mutation in injecting test order-dependency,” CoRR,
vol. abs/2104.07441, 2021.

[34] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie,
“Dependent-test-aware regression testing techniques,” in ISSTA
’20: 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, USA, July 18-22, 2020 (S. Khurshid and
C. S. Pasareanu, eds.), pp. 298–311, ACM, 2020.

[35] J. Bell and G. Kaiser, “Unit test virtualization with vmvm,” in Pro-
ceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pp. 550–561, ACM, 2014.

[36] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient depen-
dency detection for safe java test acceleration,” in Proceedings of

https://valgrind.org/info/
https://sourceforge.net/projects/php-addressbook/
https://sourceforge.net/projects/php-addressbook/
https://github.com/claroline/Claroline
https://github.com/claroline/Claroline
https://github.com/mrvautin/expressCart
https://github.com/mantisbt/mantisbt
https://github.com/mantisbt/mantisbt
https://github.com/meeting-room-booking-system/mrbs-code
https://github.com/meeting-room-booking-system/mrbs-code
https://github.com/pklink/ppma
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/dev/mysql-server/9.1.0/PAGE_MYSQL_TEST_RUN_PL.html
https://dev.mysql.com/doc/dev/mysql-server/9.1.0/PAGE_MYSQL_TEST_RUN_PL.html
https://dev.mysql.com/doc/dev/mysql-server/9.1.0/PAGE_MYSQL_TEST_RUN_PL.html
https://github.com/pako-23/gtdd-synthetic-tests-simulator
https://github.com/pako-23/gtdd-synthetic-tests-simulator
https://github.com/pako-23/gtdd
https://github.com/pako-23/gtdd-benchmarks
https://github.com/pako-23/gtdd-benchmarks


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2025. 15

APPENDIX

PFAST and MEM-FAST are agnostic w.r.t. the types of tests,
hence they are also applicable to unit tests. However, the
parallelization enabled by dependency detection has less
impact than with system-level tests, as unit tests execute
quickly. For this reason, the focus of this work is on system-
level testing, where parallelized schedules result in a con-
siderable time saving during regression runs.

For completeness, we also evaluated PFAST and MEM-
FAST on JUnit tests used to evaluate the original version of
PRADET [4]. The results are in Table 5. Specifically, when
comparing PFAST, MEM-FAST, and PRADET on JUnit tests,
we used our version of PRADET, which is the black-box vari-
ant that does not build a preliminary test dependency graph
through dynamic data flow analysis during test execution.
We chose to compare the algorithms in this way because
PFAST and MEM-FAST do not use white-box information
when detecting dependencies, thus for a fair comparison,
PRADET should also be treated as a black-box method.

In practice, we took each subject listed in the replication
package of PRADET [40], and we executed the JUnit test
suite using the reference order (i.e., the order considered by
maven when executing the command mvn test). We then
excluded the subjects whose test suite failed when executed
using the reference order, namely crystalvc, dynoptic, togglz,
joda-time and dstop (i.e., 5 out of 18 subjects). Indeed, PFAST
and MEM-FAST assume that the target test suite executed
in the reference order passes, such that dependencies can
be confirmed when there is a failure. For the remaining
subjects, we executed PRADET, PFAST, and MEM-FAST once
with a 48 hours budget, the same used by Gambi et al. [4].

Table 5 shows the results for RQ1 and RQ2 when con-
sidering the JUnit subjects. Columns 2–4, show the num-
ber of dependencies found by each dependency detection
technique. Overall, the algorithms find approximately the
same number of dependencies, and the dependency graphs
of such JUnit subjects are very sparse, confirming the results
of Gambi et al. [4]. In terms of number of schedules runs and
dependency detection time (RQ1, columns 6–11), PFAST and
MEM-FAST significantly outperform PRADET, which also
runs out of budget for 5 subjects out of 13 (indicated with
the “OOB” symbol). In particular, PFAST generates from 7.6
(photoplatform-sdf ) to 70↘ (jackson-core) less schedules than
PRADET (when PRADET does not time out); similarly, MEM-
FAST generates from 9.4 (xmlsecurity) to 160↘ (indextank-
engine) less schedules than PRADET. In terms of dependency
detection time, PFAST takes 53↘ less time than PRADET
(considering a dependency detection time of 48h in the 5
subjects in which PRADET times out) based on the median
across all subjects, while MEM-FAST takes 127↘ less time.

As the dependency graphs are very sparse, MEM-FAST
is very efficient in this context, although PFAST remains a
competitive alternative. In terms of test execution (RQ2)
Columns 12–15 show the execution time of the sequential
execution, and of the parallelized execution of the schedules
generated by PRADET, PFAST and MEM-FAST respectively.
The parallelized schedules execute 3↘ faster, based on the
median across all subjects, although the absolute difference
is small (6 seconds vs 2 seconds) as JUnit tests are computa-
tionally inexpensive.

Table 5: Dependency Detection (RQ1) and Test Execution (RQ2) for JUnit subjects used in the PRADET paper [4]. The
symbol “OOB” means that a specific technique exhausted its 48 hours budget as set by Gambi et al. [4] (when computing
the median we did not consider the rows with the OOB symbol). We excluded the subjects crystalvc, dynoptic, togglz,
joda-time, and dstop, as their respective test suites fail when executed using the reference order.

RQ1 (Dependency Detection) RQ2 (Test Execution)

# Deps. # Schedules Dependency Detection
Found Runs Time (s)

Execution Time (s)

Subject #
Te

st
s

P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

Se
qu

en
tia

l

P
R

A
D

E
T

P
FA

ST

M
E

M
-F

A
ST

xmlsecurity 92 4 4 4 4,186.0 191.0 444.0 8,305.0 262.0 421.0 10.7 4.9 4.2 4.8
photoplatform-sdf 31 2 0 0 465.0 61.0 31.0 5,754.0 238.0 111.0 14.5 10.6 10.3 11.0
DiskLruCache 61 0 0 0 1,830.0 121.0 61.0 5,923.0 109.0 49.0 3.7 2.2 2.1 2.2
Bateman 76 0 0 0 2,850.0 151.0 76.0 3,985.0 117.0 60.0 1.6 1.4 1.3 1.3
Bukkit 429 OOB 0 0 OOB 857.0 429.0 OOB 755.0 297.0 2.3 OOB 2.1 2.6
webbit 131 0 0 0 8,551.0 262.0 131.0 21,950.0 941.0 93.0 6.3 3.1 2.9 3.2
stream-lib 140 OOB 0 0 OOB 280.0 140.0 OOB 3,227.0 127.0 148.7 OOB 35.4 36.7
http-request 163 2 2 0 13,203.0 326.0 163.0 168,789.0 558.0 126.0 33.0 1.9 1.9 1.8
jackson-core 282 0 0 0 39,621.0 563.0 282.0 131,470.0 615.0 197.0 5.4 2.0 2.0 2.1
jsoup 526 OOB 1 1 OOB 1,053.0 798.0 OOB 961.0 535.0 2.1 OOB 2.4 2.2
dynjs 865 OOB 0 0 OOB 1,729.0 865.0 OOB 3,788.0 665.0 7.3 OOB 2.8 2.8
indextank-engine 61 0 0 0 9,868.0 268.0 61.0 40,190.0 371.0 51.0 6.0 3.7 3.7 3.6
okio 727 OOB 0 0 OOB 1,454.0 727.0 OOB 10,162.0 490.0 145.9 OOB 41.8 42.8

Median 0 0 0 6,368.5 280.0 163.0 15,127.5 615.0 127.0 6.3 2.7 2.8 2.8


	Introduction
	Dependency Model
	Algorithms
	PraDet Algorithm
	Pfast Algorithm
	Correctness of Pfast
	Repair of Pfast
	Parallelization of Pfast

	Mem-Fast Algorithm

	Experimental Evaluation
	Subjects
	Synthetic Tests
	Real System-level Test Suites

	Experimental Procedure
	Synthetic Tests
	Real System-level Test Suites

	Results
	RQ1 (Dependency Detection)
	RQ2 (Test Execution)

	Threats to Validity

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Pasquale Polverino
	Fabio Di Lauro
	Matteo Biagiola
	Paolo Tonella
	Antonio Carzaniga

	Appendix

