
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 1

Neural Embeddings for Web Testing
Andrea Stocco, Member, IEEE Computer Society , Alexandra Willi, Luigi Libero Lucio Starace, Matteo

Biagiola, and Paolo Tonella, Member, IEEE Computer Society

Abstract—Web test automation techniques employ web crawlers to automatically produce a web app model that is used for test
generation. Existing crawlers rely on app-specific, threshold-based, algorithms to assess state equivalence. Such algorithms are hard
to tune in the general case and cannot accurately identify and remove near-duplicate web pages from crawl models. Failing to retrieve
an accurate web app model results in automated test generation solutions that produce redundant test cases and inadequate test
suites that do not cover the web app functionalities adequately. In this paper, we propose WEBEMBED, a novel abstraction function
based on neural network embeddings and threshold-free classifiers that can be used to produce accurate web app models during
model-based test generation. Our evaluation on nine web apps shows that WEBEMBED outperforms state-of-the-art techniques by
detecting near-duplicates more accurately, inferring better web app models that exhibit 22% more precision, and 24% more recall on
average. Consequently, the test suites generated from these models achieve higher code coverage, with improvements ranging from
2% to 59% on an app-wise basis and averaging at 23%.

Index Terms—Web Testing, Neural Embeddings, GUI Testing, Doc2Vec.

F

1 INTRODUCTION

Test automation is used to enable end-to-end (E2E) func-
tional testing of web apps. In this approach, testers exercise
the application under test (AUT) with automated scripts [?],
[?], [?] that imitate the end-user interactions with the web
pages by simulating user-like events, such as clicks, scrolls,
and form submissions. Therefore, the web app is tested for
its ability to provide correct functionalities to the end user,
through its graphical user interface (GUI).

The manual development of E2E test automation scripts
is a costly endeavor in practice, and so is the maintenance
of such scripts over time [?]. For this reason, researchers
have proposed automated test generation solutions, most
of which rely on a model of the web app [?], [?], [?], [?],
[?], [?]. Model-based web testing techniques systematically
build a web app model by exploring the functionalities of
a given web app by means of a crawler [?], [?], [?]. The
model is represented in terms of web app states, i.e., logical
functional units, and transitions between states triggered
by events (e.g., clicks). Ideally, a good web app model
should contain all possible logical web pages—i.e., it should
be complete—without representing the same logical page
multiple times—i.e., it should be concise [?], [?].

To automatically determine the logical web app states,
model-based techniques use a scoring function, called state
abstraction function (SAF). When the SAF is ineffective, it
causes clone or near-duplicate states that pollute the model.
Near-duplicates are concrete instances of the same logical
state, differing only by minor changes [?].

• Andrea Stocco is with the Technical University of Munich, and fortiss
GmbH, Germany. The work was carried out at the Università della
Svizzera italiana, Switzerland.

• Luigi Libero Lucio Starace is with the Università degli Studi di Napoli
Federico II, Italy.

• Alexandra Willi, Matteo Biagiola, and Paolo Tonella are with the Univer-
sità della Svizzera italiana, Switzerland.

The presence of near-duplicates makes a crawl model
not concise (i.e., the same state appears multiple times) and
incomplete because, in the presence of duplicated states, the
crawler will waste part of its finite exploration budget re-
exploring the same state many times, possibly missing other
important, not yet discovered, states. A web app model
containing near-duplicates undermines the effectiveness of
the test suites generated from it in terms of completeness
and adequacy [?], [?]. In fact, missing states will remain
untested, potentially reducing the test suite adequacy (e.g.,
code coverage). Moreover, duplicated states might lead to
the generation of redundant test cases that do not contribute
to increasing the code coverage of the AUT [?].

A recent study [?] shows that current state-of-the-art SAF
implementations, based on similarity algorithms, hashing
algorithms, or visual resemblance of web app snapshots, are
application dependent, as no algorithm is comparably effec-
tive across different web apps. Moreover, the study reports
that, even for an effective SAF within the same web app, it is
challenging for developers to find the optimal threshold that
can detect near-duplicate states without collapsing logically
distinct states into the same one [?].

This paper investigates the problem of building a robust
SAF using neural network embeddings of web pages. An
embedding is a mapping of an input belonging to a complex
input space (e.g., natural language, images, or web pages) to
a low-dimensional and continuous vector representation be-
longing to a latent space [?]. Embeddings are useful because
of their capability to preserve the semantic similarity that
holds in the original complex input space [?], which makes
them suitable to address the web app similarity problem.

Our approach, implemented in a tool called WEBEM-
BED, consists of a novel SAF that turns multiple inter-
mediate token-sequence representations of web pages into
n-dimensional vector representations used by a classifier
to estimate the similarity, or lack thereof, of web pages.
Although there are many methods to produce vector em-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 2

Catalog
Page

click(product)

back

Catalog
Page

Detail
Page A

Detail Page
A + Review1

Detail Page
A + Reviews

1 and 2

Detail Page
A + Reviews
1, 2, and 3

click(product)

Detail Page
A + Reviews
1, 2, 3, and 4

 review(product)

 review(product)

 review(product) review(product)

Buy
Page

back

Detail
Page

 review(product)

buy(product)

1 2 3

456

Catalog

A Item A

A
Description for Item B.

Item B

Products

A Item A - 9,99 $

B Item B - 5,00 $

Catalog page Detail page for Item A

Item A A Description of Item A
9,99 $

Reviews
Quite good! by Alice

+ ADD REVIEW

BUY
Does its job by Bob

Detail page for Item B

Item B B Description of Item B
5,00 $

Reviews
Quite good! by Alice

+ ADD REVIEW

BUY

Fig. 1: Left: E-commerce web application. Center: Optimal web app model. Right: Incomplete crawl model w.r.t. the “buy”
functionality due to redundant near-duplicate states for the same “Detail page”. States ¸, ¹, º, and » are functional
near-duplicate states of state ·.

beddings [?], [?], [?], [?], [?], this paper focuses on the vector
representation produced by Doc2Vec [?], as web pages are
a mixture of text and tags. More specifically, WEBEMBED is
trained on three Doc2Vec models on a large corpus of web
pages. The input to each of the three models is respectively
the token-sequence representation of web pages built from
their tags, from their textual content, or the union of the two.
Once trained, WEBEMBED uses the three Doc2Vec models
within a web crawler: upon exploration, for each web page,
its three token-sequence representations are retrieved, the
corresponding three neural embeddings are computed and
compared with the states already present in the web app
model, resulting in three similarity scores. The considered
web page is retained only if it is not a near-duplicate
state, according to a pre-trained classifier that maps the
three similarity scores of two web pages into class 1 (near-
duplicates) or 0 (distinct).

We have evaluated WEBEMBED empirically using bench-
marks available from the literature containing a diverse set
of web apps. We assessed three different tasks, namely near-
duplicate detection, model coverage, and test generation,
on three use cases with different requirements in terms of
labeling cost for developers. In our experiments, accounting
for more than 450 configurations, WEBEMBED achieved high
accuracy scores on all use cases for all tasks, with a statis-
tically significant margin over two existing state-of-the-art
SAFs. Quite notably, our approach is threshold-free and can
be applied even without defining any app-specific corpus of
labeled data, still achieving satisfactory performance (75%
accuracy on near-duplicate detection and 82% on model
coverage). When a corpus of labeled data is available for
a given web app or sufficient labeling cost is allowed, the
accuracy of WEBEMBED is further improved (93% on near-
duplicate detection—a 22% increment—and 92% concern-
ing model coverage—10% increment). Lastly, by employing
WEBEMBED, tests generated based on crawled models result
in higher code coverage, with an average increase of 23%
compared to current state-of-the-art techniques (ranging
from 2% to 59% on an app-wise basis).

Our paper makes the following contributions:

Technique. A novel approach, implemented in the publicly
available tool WEBEMBED [?], which uses neural em-
beddings and classifiers for web crawling and testing.

Evaluation. An empirical study showing that WEBEMBED
is more effective than two state-of-the-art SAFs in the
near-duplicate detection, model coverage, and test gen-
eration tasks under different configurations/use cases.

2 BACKGROUND

In this section, we describe the problem of automatically
retrieving an accurate web app model for test generation
and its challenges. Then, we introduce the concept of neural
embeddings to overcome such challenges.

We use as a running example a simple e-commerce web
app showing a product catalog. A user can view the details
of a product, add a review and buy it (Figure 1 (left)).

2.1 Automated Web Model Inference

Automated web model inference techniques, such as crawl-
ing, operate through state exploration by triggering events
(e.g., clicks) and by generating inputs that cause state tran-
sitions in the web app. Whenever significant changes in
the current web page are detected, a new state is added
to the model. A state can be viewed as an abstraction of
all the dynamic, runtime versions of the same logical web
page, often represented by their Document Object Models
(DOMs). The final model is a set of states, i.e., the set of
abstract web pages of the web app, and edges that represent
transitions between states.

From a functional testing viewpoint, the optimal web
app model, in terms of logical states and functionalities, is
shown in Figure 1 (center). The model includes three states,
namely Catalog page, Detail page and Buy page. From the
Catalog page, it is possible to navigate to the Detail page
by clicking on a product. From a product Detail page, it is
possible to either write a review for the product, which leads
back to the same page, or buy the product, which causes a
transition to the Buy page. From both the Detail and Buy
pages, users can navigate back to the initial Catalog page.

2.2 Near-duplicate States

Figure 1 (right) shows a crawl model produced by the state-
of-the-art crawler Crawljax [?] with its default configuration,
which consists of: (1) no state abstraction capability, i.e., all
dynamic states are regarded as new states; (2) an ordered
GUI events queuing strategy that considers HMTL elements
from top to bottom and from left to right; (3) a depth-first
exploration strategy.

In particular, once the web app is loaded, the crawler
saves the initial home page (also called index page) as the
first state of the crawl model (i.e., state ¶). In our running
example, the index page is the Catalog page. Then, the
crawler clicks on the first displayed product, i.e., Item A,
which leads to the web page showing the item details. Such
page is saved as a state into the crawl model (Detail page

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 3

A) and marked as unvisited (i.e., state ·). Since a new state
is added, the crawler returns to the index page (not shown
in Figure 1) and crawls back to the newly added unvisited
state. Next, the crawler clicks on the Add Review button,
adds Review 1 to the page, either with random or manually
provided input data, and stores another state to the crawl
model (Detail page A + Review 1), marking it as unvisited
since it is regarded as a different state. Similarly to the
previously found state (i.e., state ·), the crawler returns to
the index page and crawls back to state ¸ by clicking on
Item A. Since state · is a new state and the “Add review”
clickable is unfired, the crawler adds a new review creating a
new state (i.e., state ¹); the process repeats until the crawler
runs out of budget.

From a testing viewpoint, all web pages containing the
details of the selected product and its reviews should be
collapsed into the same logical page, which is not the case
with our crawl model in which many similar replicas of the
Detail page for Item A are present. In the literature, concrete
instances of the same logical page, such as the detail pages
of our example, are known as clones, or near-duplicate
states [?]. The presence of near-duplicate states in web
app models has a detrimental effect on the effectiveness of
model-based test generation techniques, in terms of concise-
ness and completeness. Concerning the former, the presence
of near-duplicates typically leads to test suites containing
many redundant tests exercising the same functionality. In
our running example, it would be sufficient to cover the De-
tail page only once with a test case, as covering all potential
detail pages with many redundant test cases is unlikely to
increase the code coverage achieved by the test suite [?]. As
for completeness, when exploring large web apps, crawlers
may waste a considerable part of their time budget visiting
near-duplicate states, without exploring other relevant parts
of the application. This harms the completeness of the
inferred models, and thus the associated test suites. In the
running example, the crawler failed to recognize that the
‘new’ updated Detail page for Item A, featuring the reviews,
was a near-duplicate of the previously-visited Detail page.
Therefore, it consumed the entire time budget failing to
explore other significant parts of the application, such as
the “buy” functionality, leading to an incomplete model.

The SAF used by the crawler is the main root cause
for the lack of conciseness and completeness of automated
crawl models [?]. Yandrapally et al. [?] showed that state-of-
the-art structural and visual SAF implementations produce
near-duplicate states. Moreover, the study highlighted the
challenge to select optimal thresholds to distinguish near-
duplicate from distinct web pages.

Motivated by these findings, in this paper we propose a
novel SAF based on the usage of neural embeddings, paired
with machine learning classifiers that require no thresholds.

2.3 Neural Embeddings and Doc2Vec

Neural embeddings have shown to be useful for many
code analysis tasks such as code completion [?], log state-
ment generation [?], code review [?] and other code-related
tasks [?], [?]. In this work, we evaluate whether embedding
models produced by Doc2Vec [?], a popular document em-
bedding technique, can be useful to target the equivalence

problem between web pages, possibly with some adaptation
and fine-tuning to take into account the semi-structured na-
ture of HTML documents. We focus on Doc2Vec because it
has been applied to compute embeddings for large corpora
of textual data [?], document classification [?], sentiment
analysis [?], [?], and disease detection studies [?]. How-
ever, its application to web testing is still unexplored. We
hypothesize that Doc2Vec can produce meaningful embed-
dings also for HTML pages since their textual representation
contains both tags and text.

Doc2Vec aims to find an optimal embedding model such
that similar text documents would produce embeddings
that lie close in the vector space. Given a document, Doc2Vec
creates and projects paragraph embeddings, as well as word
embeddings, into the vector space and then uses a trained
deep neural network model to predict words of paragraphs
or documents in a corpus [?]. Instead of computing an em-
bedding for each word like Word2Vec [?], Doc2Vec creates a
different embedding for an entire paragraph or even a doc-
ument. At inference time, the input paragraph id vector (a
one-hot encoded vector) is unknown, hence it is first derived
by gradient descent given the input and output words and
it is concatenated with the one-hot encoded vectors of the
paragraph words to predict the next word in the paragraph.
The internal representation used to make such a prediction
is averaged or concatenated across predictions to get the
final document embedding [?].

Doc2Vec can be configured to use two different models:
Paragraph Vector Distributed Memory (PV-DM) or Dis-
tributed Bag Of Words (DBOW). The former randomly picks
a set of consecutive words in the paragraph and tries to pre-
dict the word in the middle, using the surrounding words
(i.e., context words) and the paragraph id. The latter is
similar to a Skip-gram model, in which, given a paragraph
id, the model tries to predict the next word of a randomly
picked sequence of words from the chosen paragraph [?].

3 APPROACH

The goal of our approach, which we call WEBEMBED, is to
automatically detect the occurrence of near-duplicate web
pages during crawling, discard them from the web app
crawl model and generate test suites. In a nutshell, during
crawling, our approach uses a novel neural embedding
model for web pages built on top of Doc2Vec [?]. Initially
proposed for textual documents, we explore its applica-
bility to HTML web pages containing both tags and text.
The DOM tags and the text tokens of the retrieved web
app states are represented as vectors in an n-dimensional
embedding space and used by a novel SAF to assess the
similarity between web pages.

Figure 2 illustrates our approach, which consists of four
phases, namely (1) Training Doc2Vec, (2) Training the State
Abstraction Function, (3) Crawling, and (4) Test Creation.

In the first phase, different Doc2Vec models are trained
on a unlabeled corpus of web pages. From each web page,
our approach extracts different token-sequence representa-
tions of the DOM, namely its textual content, its tags or
a combined representation of content+tags. Then, for each
representation, a Doc2Vec model is trained. In the second
phase, we use a labeled corpus of web pages in which

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 4

[text1, text2, …]
[text1, text2, …]

training set

Extract Content

Extract Tags

Content
Token Sequence

Tags
Token Sequence

Content+Tags
Token Sequence

[web page 1]
[web page 2]

…

id content

[web page 1] [tag1, tag2, …]
[web page 2] [tag1, tag2, …]

…

id tags

[web page 1] [tag1, text1, …]
[web page 2] [tag1, text2, …]

…

id content+tags

Collect
Content + Tags

Train doc2vec
model on Content
Token Sequence

Train doc2vec
model on

Content+Tags
Token Sequence

Train doc2vec
model on Tags

Token Sequence

PHASE 1 - TRAINING DOC2VEC PHASE 4 - TEST CREATION

PHASE 2 - TRAINING STATE ABSTRACTION FUNCTION

training set
(labeled)

Compute
Embeddings

Compute
Similarities

Train
Classifier

SAF

web page A

web page B

embedding A

embedding B

—

similarity SAFCrawler

Web App Crawl Model

Crawl
Segmentation

Test Cases

PHASE 3 - CRAWLING

Fig. 2: Overview of the WEBEMBED approach

all pairs of web pages are annotated as being distinct or
clone/near-duplicate. For each pair of web pages, we use
the Doc2Vec models to compute their vector embeddings
such that their similarity can be calculated. Once all sim-
ilarities are computed, we train a classifier to distinguish
clone/near-duplicate web pages based on such similarities.
In the third phase, we use the Doc2Vec models at runtime
during crawling as a SAF. When two web pages are avail-
able, our approach computes their embeddings based on
a given representation (either content, tags, content+tags),
computes their similarity, and uses the classifier to predict
whether the two web pages are distinct or near-duplicate. In
the fourth phase, each crawl path is turned into a web test
case. We now detail each phase of our approach.

3.1 Training Doc2Vec
Our approach requires computing embeddings for HTML
web pages. While originally conceived for general-purpose
textual documents, in this work we extend Doc2Vec [?] to
support web pages.

3.1.1 Token sequence extraction
The first phase requires an unlabeled corpus of HTML web
pages, from which we extract a convenient representation
for training a Doc2Vec model. Let us consider the HTML
of the Detail page for Item A (Listing 1). We first retrieve a
sequence of tokens of the DOM representing either its con-
tent, tags or content+tags. The procedure EXTRACTTOKENS,
outlined in Algorithm 1 (lines 1–7), starts from the root node
of the DOM and proceeds as follows: (1) the sequence of
tokens (either tags, content, or content+tags) for the current
node are extracted (line 3); (2) the extraction procedure is
recursively called, in a depth-first fashion, on all children of
the current node, from left to right. The result of these calls
is then appended to the list of extracted tokens (lines 4–6);
(3) the sequence of extracted tokens is returned (line 7).
Tags Token Sequence. The first extraction function con-
siders only the tags of an HTML page while discarding
comments, scripts, and CSS. The intuition is that tags in-
dicate the general layout of an HTML document and may
be effective for detecting structurally similar web pages [?].

1 <html lang="en">
2 <head>
3 <title>Item A detail page</title>
4 <link rel="stylesheet" href="styles.css">
5 <script type="text/javascript" src="utils.js"><←↩

/script>
6 </head>
7 <body>
8
9 <h1>Item A</h1>

10
11 <p class="price">9.99 $</p>
12 BUY
13 <p class="descr">Detailed description for item ←↩

A.</p>
14 <h2>Reviews</h2><!-- Reviews listed here -->
15 + ADD ←↩

REVIEW
16 <table class="reviews">
17 <tr> <!-- First review -->
18 <td>Quite good by Alice<←↩

/a></td>
19 <td></td>
20 </tr>
21 <tr> <!-- Second review -->
22 <td>Does its job by Bob</a←↩

></td>
23 <td></td>
24 </tr>
25 </table>
26 </body>
27 <script>add_review();</script>
28 </html>

Listing 1: HTML of Detail page for Item A. Tags are
highlighted in boldface, content in blue.

Consequently, the tag token sequence of the web page in
Listing 1 is: [html, head, title, body, img, h1, img, p, a,
p, h2, a, table, tr, td, a, td, img, tr, td, a, td, img].
Content Token Sequence. The second extraction function
only retrieves the textual content of a web page. Intuitively,
two web pages sharing similar textual content have some
degree of topical relatedness [?]. Consequently, the HTML
in Listing 1 is converted to the following tokens of DOM
content: [item, a, detail, page, item, a, 9.99, $, buy, detailed,
description, for, item, a, reviews, +, add, review, quite, good, by,
alice, does, its, job, by, bob].
Content+tags Token Sequence. The third extraction func-
tion considers both content and tags and combines the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 5

Algorithm 1: Web App Crawling with WEBEMBED

1 Function EXTRACTTOKENS(n, et): . et: content, tags, or
both

2 let tokens be an empty list;
3 tokens .append(getTokens(n, et));
4 foreach children node c of n, from left to right do
5 if c is not a script, style, or comment node then
6 tokens.append(EXTRACTTOKENS(c))
7 end
8 end
9 return tokens ;

10 Function CRAWL(initial URL):
11 s1 ← getState(initial URL);
12 model ← initializeModel(s1);
13 while ¬ timeout do
14 next← nextStateToExplore(model);
15 if next = nil then . app exhaustively explored
16 break;
17 end
18 s← getToState(next);
19 for e ∈ getCandidateEvents(s) do
20 fireEvent(e);
21 sc ← current state after firing the event e;
22 if ¬ ISDUPLICATE(s,model) then
23 add sc to model ;
24 end
25 end
26 end
27 return model;

28 Function ISDUPLICATE(sc, model):
29 foreach state s′ in model do
30 if CLASSIFY(sc, s′) = ‘clone’ then
31 return True; . s is a duplicate of s′

32 end
33 end
34 return False;

35 Function CLASSIFY(p1, p2, ET): . ET: embedding types
36 let s be an empty list;
37 foreach embedding type et in ET do
38 r1 ← EXTRACTTOKENS(p1.getRootNode(), et);
39 r2 ← EXTRACTTOKENS(p2.getRootNode(), et);
40 doc2vec← getDoc2VecModel(et);
41 e1 ← doc2vec.infer(r1) ;
42 e2 ← doc2vec.infer(r2);
43 s.append(cosineSimilarity(e1, e2));
44 end
45 return classifier .classify(s);

output of the two previous extraction functions. This can be
effective in cases where using the tags or the content only is
not enough to accurately classify two web pages. The HTML
in Listing 1 is converted to the following content+tags token
sequence: [html, head, title, item, a, detail, page, link,
body, img, h1, item, a, img, p, 9.99, $, a, buy, p, detailed,
description, for, item, a, h2, reviews, a, +, add, review, table,
tr, td, quite, good, by, a, alice, td, img, tr, td, does, its, job,
by, a, bob, td, img].

In our empirical study, we evaluate the effectiveness of
all three token sequences (tags, content, and content+tags)
for near-duplicate web page detection.

3.1.2 Model Implementation and Training

Once the pre-processing for token sequence extraction is
done, three different Doc2Vec models are trained, i.e., one
model for each token-sequence type (using the DBOW
model) [?]. Hence, we obtain three Doc2Vec models that
allow us to compare pairs of web pages and compute their
similarity based on one token-sequence representation of
the pair at a time. For example, the following embeddings

are produced for the HTML of Listing 1:

doc2vec(tags) = [−0.25, 0.48, ..., 0.03]
doc2vec(content) = [−0.55, 0.17, ..., 0.90]

doc2vec(content + tags) = [−0.40, 0.33, ..., 0.44]

3.2 Training State Abstraction Function

In the second phase, we train a SAF. This task requires a
labeled corpus of web pages, in which each pair of web pages
is manually labeled to indicate whether the web pages in the
pair are clones/near-duplicates.

For each pair of web pages in such corpus, we use one
of the different Doc2Vec models to compute their embed-
dings. Then, we compute the cosine similarity [?], a widely
used metric to assess vector similarity. A combination of
the three similarity scores, based on content, tags, or con-
tent+tags neural embeddings, is used to train a classifier
to discriminate two web pages as being distinct or clones.
In preliminary experiments, we also used the embeddings
as input to the classifier without noticing any significant
improvement. For performance reasons, we eventually used
similarity scores, as a smaller input vector makes both the
training and inference of the classifier faster. In particular,
the inference time is critical as it directly impacts the time
budget of the crawler.

3.3 Crawling

The third phase consists of using the trained SAF during
crawling, to infer crawl models that can be used for auto-
mated test generation.

3.3.1 The Crawler
The crawler loads the web pages in a web browser and
exercises client-side JavaScript code to simulate user-like
interactions with the web app. This allows the crawler
to support modern, client-side intensive, single-page web
applications. The main conceptual steps performed when
exploring a web application are outlined in the CRAWL
function of Algorithm 1 (lines 8–20).

Crawling starts at an initial URL, the homepage is loaded
into the browser and the initial DOM state, called index, is
added to the model (line 10). Subsequently, the main loop
(lines 11–19) is executed until the given time budget expires
or there are no more states to visit (i.e., the web app has
been exhaustively explored according to the crawler). In
each iteration of the main loop, the first unvisited state in
the model is selected (line 12), and the crawler puts in place
adequate actions to reach said state. If the state cannot be
reached directly, it retrieves the path from the index page
and fires the events corresponding to each transition in the
path. Upon reaching the unvisited state, the clickable web
elements are collected (i.e., the web elements on which in-
teraction is possible, line 16), and user events such as filling
forms or clicking items are generated (line 17). After firing
an event, the current DOM state sc is captured (line 18).
The ISDUPLICATE function supervises the construction of
the model and checks whether sc is a duplicate of an existing
state (lines 22–26) by computing pairwise comparisons with
all existing states in the model using the WEBEMBED SAF.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 6

The state sc is eventually added to the model if the SAF
regards it as a distinct state, i.e., a state that is not a duplicate
of another existing state in the model (lines 23–26). Otherwise, it
is rejected and the crawler continues its exploration from the
next available unvisited state until the timeout is reached.

3.3.2 Usage of the State Abstraction Function
The CLASSIFY procedure (lines 27–36) illustrates our neural-
based SAF. Given two web pages p1, p2 and an embedding
typeET , we first extract the token-sequence representations
from each page based on the selected embedding types (ET
can be any non empty subset of {content, tags, content+tags}),
obtaining one list of tokens for each web page (lines 30–31).
Each of the two token sequences r1 and r2 is then fed to the
appropriate Doc2Vec model (line 32) to compute an embed-
ding (lines 33–34). Then, the cosine similarity between the
two resulting embeddings e1 and e2 is computed, obtaining
a similarity score that is appended to the list s of similarities
computed so far (line 35). Next, the classifier marks the
two pages as either distinct or clones based on the list s
of similarity scores and determines the SAF return value
(line 36), which is ‘clone’ in case of near-duplicate detection
or ‘distinct’ otherwise.
Example. Consider the following embeddings produced for
our running example, for the embedding type ‘tags’ (i.e.,ET
= [‘tags’]):

p1 = Catalog Page e1 = [−0.45, 0.56, ..., 0.30]
p2 = Detail Page A e2 = [−0.55, 0.17, ..., 0.90]
p3 = Detail Page A + Review 1 e3 = [−0.56, 0.19, ..., 0.95]

During crawling, let us assume that a decision tree classi-
fier flags a pair of pages as ‘clone’ when the cosine similarity
between their embeddings satisfies the root decision node
condition (s > 0.8). If sim(e1, e2) = 0.56, p2 is added to the
model, as p2 is not too similar to p1. Then, when exploring
p3, we obtain sim(e3, e1) = 0.58 and sim(e2, e3) = 0.95.
Hence, page p3 is not added to the model as it is recognized
as a near-duplicate (‘clone’) of p2.

3.4 Test Creation
Our approach automatically generates a test suite during
crawling through segmentation [?]. The crawl sequence of
states is segmented into test cases when (1) the current DOM
state no longer contains any candidate clickable elements
to be fired and the crawler is reset to the index page;
(2) no new states are present on the current path. In the
case of Figure 1 (right), four (redundant) test cases are
generated, one for each state representing the Detail page
for item A. With WEBEMBED, the output model only has
one state for the Detail page. Hence, only one test would be
generated, reducing redundancy while keeping model and
code coverage the same.

3.5 Implementation
We trained Doc2Vec models using the gensim [?] Python
library and used the classifiers implementations available
in the scikit-learn [?] Python library. We integrated
WEBEMBED within Crawljax [?]. To automatically generate
a test suite during crawling, we use the state-of-the-art

TABLE 1: Web page characteristics across the datasets

Web page metrics

DOM Source Text content
(# nodes) (# chars) (# chars)

Dataset # pages Mean Std. Mean Std. Mean Std.

DS 33,394 821 960 107,055 160,897 7,309 10,503
RS 1,826 665 687 91,124 127,116 5,964 8,487
CC 368,927 401 913 51,097 70,541 6,139 14,642
SS 1,313 212 287 16,234 17,320 1,335 1,262

DANTE web test generator [?]. DANTE generates fully
compilable and functioning Selenium test cases [?] by seg-
menting a crawling session and by re-using the same inputs
used during crawling.

4 EMPIRICAL STUDY

4.1 Research Questions
To assess the practical benefits of neural embeddings for
web testing, we consider the following research questions:

RQ1 (near-duplicate detection). How effective is WEBEMBED
in distinguishing near-duplicate from distinct web app states?
RQ2 (model quality). How do the web app models generated by
WEBEMBED compare to a ground truth model?
RQ3 (code coverage). What is the code coverage of the tests
generated from WEBEMBED web app models?

RQ1 aims to assess what configuration of WEBEMBED,
in terms of web embedding and classifier, is more effective
at detecting near-duplicates through state-pair classification.
RQ2 focuses on the crawl model quality in terms of com-
pleteness and conciseness. RQ3 evaluates WEBEMBED when
used for web testing, specifically assessing the test suites
generated by WEBEMBED crawl models in terms of code
coverage of the web apps under test.

4.2 Datasets
We use three existing datasets available from the study by
Yandrapally et al. [?], plus an additional dataset of web
pages collected by the Common Crawl project [?]. Table 1
shows analytics information about the web pages of the
considered datasets in terms of DOM size, length of the
HTML source, and amount of text content.

The first dataset DS contains 493,088 state-pairs derived
from automated crawls (using Crawljax [?]) of 1,031 ran-
domly selected websites from the top one million provided
by Alexa, a popular website that ranks sites based on their
global popularity (dismissed as of May 1, 2022). For training
Doc2Vec, we used an additional dataset (listed third in
Table 1) of 368,927 web pages available from the Common
Crawl project [?], also used in previous research [?]. We refer
to this dataset as CC. Similarly to DS , the web pages in CC
are also collected by crawling real-world websites.

The second dataset in Table 1, referred to as RS , con-
tains 1,000 state-pairs from DS that Yandrapally et al. [?]
manually labeled as either clone, near-duplicate or distinct.

The fourth dataset SS contains 97,500 state-pairs of nine
subject apps (Table 2), which were also manually labeled
by Yandrapally et al. [?] as clone, near-duplicate or distinct.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 7

TABLE 2: Subject Set with Manual Classification

Lo
gi

ca
l

St
at

es

C
on

cr
et

e
St

at
es

R
ed

un
da

nc
y

(%
)

St
at

e-
pa

ir
s

D
is

ti
nc

t

C
lo

ne
s

an
d

N
ea

r-
du

pl
ic

at
es

App1 25 131 524 8,515 6,142 2,373
App2 36 189 525 17,766 14,988 2,778
App3 23 99 430 4,851 432 531
App4 14 151 1,079 11,325 7,254 4,071
App5 53 151 285 11,325 10,206 119
App6 21 153 729 11,628 10,683 945
App7 20 140 700 9,730 5,782 3,948
App8 10 150 1,500 11,175 6,569 4,606
App9 14 149 1,064 11,175 9,411 1,615

These nine web apps (Table 2) have been used as subjects
in previous research on web testing [?], [?], [?], [?]. Despite
being developed with different frameworks, they all pro-
vide CRUD functionalities (e.g., login, or add user) which
make them functionally similar. Five apps are open-source
PHP-based applications, namely Addressbook (App1, v.
8.2.5) [?], Claroline (App2, v. 1.11.10) [?], PPMA (App3, v.
0.6.0) [?], MRBS (App4, v. 1.4.9) [?] and MantisBT (App5,
v. 1.1.8) [?]. Four are JavaScript single-page applications—
Dimeshift (App6, commit 261166d) [?], Pagekit (App7, v.
1.0.16) [?], Phoenix (App8, v. 1.1.0) [?] and PetClinic (App9,
commit 6010d5) [?]—developed using popular JavaScript
frameworks such as Backbone.js, Vue.js, Phoenix/React and
AngularJS.

4.3 Baselines
Based on the study by Yandrapally et al. [?], we selected two
algorithms as baselines for WEBEMBED, one structural and
one visual. The structural algorithm is RTED (Robust Tree
Edit Distance) [?], a DOM tree edit distance algorithm. The
visual algorithm is PDiff [?], which compares two web page
screenshots based on a human-like concept of similarity
that uses spatial, luminance, and color sensitivity. We chose
them as baselines for WEBEMBED for the following reasons:
(1) they were the best structural and visual algorithms for
near-duplicate detection [?], (2) they were used as a SAF for
web testing purposes within Crawljax.

4.4 Use Cases
To evaluate the effectiveness of WEBEMBED, we consider
three use cases, summarized in Table 3. For all use cases,
WEBEMBED relies on the embeddings computed by a com-
mon Doc2Vec model trained on the non-annotated pages of
the considered datasets, namely DS ∪ CC. The differences
among the use cases are the datasets used to train the
WEBEMBED classifiers and the associated labeling cost for
developers. To avoid confounding factors, we used the tool
difflib to assess the presence of cloned pages across
datasets and results indicate that no such clones exist.

4.4.1 Beyond apps
This use case aims at investigating the feasibility of a
general-purpose model trained on web pages that are dif-
ferent from the ones it is tested on. Therefore, we train the

TABLE 3: Use cases and variants of WEBEMBED

WEBEMBED

Doc2Vec Classifiers

Use case Train Set Train Set Test Set

Beyond apps DS ∪ CC RS SS
Across apps (for each Appi) DS ∪ CC SS \Appi Appi
Within apps (for each Appi) DS ∪ CC 80% Appi 20% Appi

WEBEMBED classifiers on RS and test them on SS . This
use case requires no labeling costs to web developers, as the
classifier we train on RS is supposed to be re-used as-is on
any new web app.

4.4.2 Across apps
This use case investigates the generalizability of WEBEMBED
when applied to web apps similar to the ones the classifier
was trained on (similarity refers to having analogous CRUD
functionalities, see Section 4.2). Indeed, we train a classifier
for each of the nine web apps in SS in a leave-one-out
fashion. The training set considers the annotated state-pairs
of eight web apps, using the ninth web app as a test set. We
iteratively vary the test web app until all nine subject apps
are accounted for. In this use case, developers are supposed
to find and manually label all pages of web apps similar to
the ones under test. A company may develop a few web
apps in a given domain, investing in manual labeling of
the near-duplicates of such apps to save the near-duplicate
detection effort later, when a new app will be developed in
the same domain.

4.4.3 Within apps
We train an app-specific classifier for each of the nine web
apps. For each app in SS , we use 80% of the state pairs for
training the classifier and the remaining 20% for testing. In
this use case, developers are required to label a significant
portion of the near-duplicate pages of the web app under
test before a classifier can be trained and applied to the other
pages of the same web app.

4.5 Procedure and Metrics
4.5.1 RQ1 (near-duplicate detection)
For each use case of WEBEMBED (Section 4.4), we evaluate
different WEBEMBED implementations, varying (1) the to-
ken sequence used to train Doc2Vec and (2) the classifier
used to enable the SAF. Concerning the token sequences,
we trained three different Doc2Vec models, one for each
representation of the pages in the dataset DS ∪ CC (tags,
content, content+tags). Concerning the training hyperpa-
rameters, we used the default parameters of the gensim [?]
Python library and fitted the models for 100 epochs using a
vector size of 100.

Concerning the classifiers, we evaluate a total of eight
classifiers. We consider six machine learning classifiers from
the scikit-learn [?] Python library, namely Decision
Tree, Nearest Neighbour, SVM, Naı̈ve Bayes, Random For-
est, and Multi-layer Perceptron. We also consider their en-
semble with majority voting and an additional threshold-
based classifier.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 8

The quality of near duplicate detection is measured
using accuracy, precision, recall, and F1, where the last
three metrics are computed under the assumption that the
positive class (output 1 of the classifier) is ‘near-duplicate’
(‘distinct’ being the negative class). Overall, we evaluate
456 WEBEMBED configurations (8 classifiers × 3 token se-
quences × 19 configurations, one for Beyond apps, nine for
Across apps, and nine for Within apps).

4.5.2 RQ2 (model quality)
The crawl models contain redundant concrete states that
Yandrapally et al. [?] aggregated into the corresponding
logical pages. Logical pages represent clusters of concrete
pages that are semantically the same. To measure WEBE-
MBED’s model quality w.r.t. the ground truth, we compute
the precision, recall, and F1 scores, considering the intra-
pairs (IP) in common in the given model and the intra-pairs
within each manually identified logical page (GT) [?]:

p =
|IPGT ∩ IPWEBEMBED|
|IPWEBEMBED|

r =
|IPGT ∩ IPWEBEMBED|

|IPGT |

We also consider the F1 score as the harmonic mean
of (intra-pair) precision and recall. As an example, let
us consider a set of 6 web pages {p1, p2, p3, p4, p5, p6}
with the following ground truth (GT) assignment:
{p1, p2}, {p3}, {p4, p5, p6}. Suppose WEBEMBED produces
the following assignment: {p1, p3}, {p2}, {p4, p5}, {p6}. The
intra-pairs for GT are 〈p1, p2〉, 〈p4, p5〉, 〈p4, p6〉, 〈p5, p6〉,
whereas the intra-pairs for WEBEMBED are 〈p1, p3〉, 〈p4, p5〉.
Thus, p = |〈p4, p5〉|/|〈p1, p3〉, 〈p4, p5〉| = 0.5, r =
|〈p4, p5〉|/|〈p1, p2〉, 〈p4, p5〉,
〈p4, p6〉, 〈p5, p6〉| = 0.25, and F1 = 2pr/(p+ r) = 0.32.

4.5.3 RQ3 (code coverage)
To assess the effectiveness of WEBEMBED when used for
web testing, we crawl each web application in SS multiple
times, each time varying the SAF. For all tools and all use
cases, we set the same crawling time of 30 minutes. We use
DANTE to generate Selenium web test cases from the crawl
sequences, execute the tests, and measure the web app code
coverage. For JavaScript-based apps (Dimeshift, Pagekit,
Phoenix, PetClinic), we measure client-side code coverage
using cdp4j (v. 3.0.8) library, i.e., the Java implementa-
tion of Chrome DevTools. For PHP-based apps (Claroline,
Addressbook, PPMA, MRBS, MantisBT), we measure the
server-side code coverage using the xdebug (v. 2.2.4) PHP
extension and the php-code-coverage (v. 2.2.3) library.
We addressed randomness in our experiments by manually
adding delays where appropriate in the web test suites,
in order to mitigate flaky executions. Before measuring
coverage, we executed each test suite three times to ensure
comparable outcomes across executions of different test
suites.

We assess the statistical significance of the differences
between WEBEMBED and the baselines using the non-
parametric Mann-Whitney U test [?] (with α = 0.05) and
the magnitude of the differences, if any, using Cohen’s d
effect size [?].

TABLE 4: RQ1 Near-Duplicate Detection. The best average
values of accuracy and F1 are boldfaced.

Beyond Apps Across Apps Within Apps

Embed. Acc. Pr. Rec. F1 Acc. Pr. Rec. F1 Acc. Pr. Rec. F1

content 0.73 0.97 0.67 0.79 0.82 0.89 0.88 0.87 0.91 0.92 0.95 0.93
tags 0.75 0.98 0.70 0.81 0.79 0.88 0.86 0.84 0.85 0.91 0.87 0.88
content
+ tags

0.75 0.97 0.70 0.81 0.83 0.89 0.90 0.87 0.93 0.94 0.97 0.95

RTED 0.75 0.86 0.81 0.83 0.77 0.85 0.86 0.80 0.84 0.92 0.85 0.86
PDiff 0.48 0.81 0.43 0.56 0.74 0.86 0.80 0.83 0.86 0.87 0.97 0.91

4.6 Results
4.6.1 RQ1 (near-duplicate detection)
Table 4 shows the results for the tools being compared on the
task of near-duplicate detection. Due to space reasons, we
only present the scores of WEBEMBED when using the SVM
classifier, which showed to be the best in our experiments
across all use cases. For the Across apps and Within apps use
cases, we present the scores averaged over all nine apps. All
results are available in our replication package [?].

For each technique being compared, Table 4 shows av-
erage accuracy (Acc.), precision (Pr.), recall (Rec.), and F1

scores, divided by use case. The scores for the baselines
RTED and PDiff are also reported. In the Beyond apps use
case, WEBEMBED and RTED have similar accuracy (resp.
F1) values, whereas WEBEMBED has a +56% (resp. +44%) in-
crease w.r.t. PDiff. For the Across apps use case, WEBEMBED
scores higher accuracy and F1 w.r.t. the baselines (e.g., for
accuracy, +8% increase w.r.t. RTED and +12% w.r.t. PDiff).
In the Within apps use case, WEBEMBED scores higher
accuracy and F1 than the baseline approaches as well (e.g.,
for accuracy, +11% increase w.r.t. RTED and +8% increase
w.r.t. PDiff).

Statistical tests confirmed that the differences in accuracy
and F1 between WEBEMBED and the best baseline (either
RTED or PDiff, depending on the use case) are statistically
significant (p-value < 0.05) with a large effect size in both
the Across and Within apps use cases.

RQ1: WEBEMBED achieves the highest accuracy scores
(75–93%, on average) over all use cases when configured
with content+tags embeddings and SVM classifier. The
differences w.r.t. the baseline approaches are statistically
significant in two out of three use cases.

4.6.2 RQ2 (model quality)
Table 5 shows, for each web app, intra-pairs precision (Pr.),
intra-pairs recall (Rec.), and intra-pairs F1 scores for all
competing techniques, divided by use case. For WEBEMBED,
we present the results for the best configuration resulting
from RQ1 (content+tags embeddings and SVM classifier).

Overall, WEBEMBED produces more accurate models
(i.e., models more similar to the ground truth) than the
competing techniques across all use cases, as summarized
by the intra-pairs F1 scores.

In the Beyond apps use case, WEBEMBED scores +18%
and +37% average F1 w.r.t. RTED and PDiff, respectively.
In the Within apps use case, WEBEMBED scores +21% and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 9

TABLE 5: RQ2 Model Coverage. Best average F1 scores are highlighted in bold.

Beyond Apps Across Apps Within Apps

WEBEMBED RTED PDiff WEBEMBED RTED PDiff WEBEMBED RTED PDiff

Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

App1 0.89 0.95 0.92 0.68 0.72 0.70 0.55 0.58 0.57 0.89 0.95 0.92 0.69 0.73 0.70 0.86 0.91 0.88 0.84 0.89 0.86 0.15 0.16 0.15 0.27 0.28 0.28
App2 0.93 1.00 0.97 0.93 1.00 0.97 0.93 1.00 0.96 0.93 1.00 0.97 0.93 1.00 0.97 0.93 1.00 0.96 0.93 1.00 0.97 0.93 1.00 0.97 0.93 1.00 0.97
App3 0.82 1.00 0.90 0.82 1.00 0.90 0.82 1.00 0.90 0.79 0.96 0.87 0.82 1.00 0.90 0.82 1.00 0.90 0.82 1.00 0.90 0.82 1.00 0.90 0.82 1.00 0.90
App4 0.94 0.98 0.96 0.92 0.96 0.94 0.56 0.58 0.57 0.92 0.96 0.94 0.92 0.96 0.94 0.50 0.52 0.51 0.96 1.00 0.98 0.92 0.96 0.94 0.71 0.73 0.72
App5 0.84 0.97 0.90 0.58 0.67 0.62 0.75 0.86 0.80 0.81 0.93 0.87 0.58 0.67 0.62 0.75 0.86 0.80 0.87 1.00 0.93 0.87 1.00 0.93 0.87 1.00 0.93
App6 0.84 1.00 0.91 0.81 0.96 0.88 0.56 0.67 0.61 0.76 0.90 0.82 0.81 0.96 0.88 0.56 0.67 0.61 0.84 1.00 0.91 0.83 0.99 0.90 0.62 0.73 0.67
App7 0.56 0.58 0.57 0.21 0.21 0.21 0.21 0.21 0.21 0.82 0.84 0.83 0.21 0.21 0.21 0.21 0.21 0.21 0.95 0.98 0.96 0.30 0.31 0.30 0.36 0.38 0.37
App8 0.71 0.73 0.72 0.45 0.47 0.46 0.33 0.34 0.34 0.71 0.73 0.72 0.45 0.47 0.46 0.33 0.34 0.34 0.80 0.83 0.81 0.15 0.16 0.15 0.47 0.48 0.48
App9 0.72 0.79 0.75 0.70 0.77 0.73 0.53 0.58 0.55 0.77 0.85 0.81 0.70 0.77 0.73 0.53 0.58 0.55 0.91 1.00 0.95 0.82 0.90 0.86 0.91 1.00 0.95

Avg. 0.81 0.89 0.84 0.68 0.75 0.71 0.58 0.65 0.61 0.82 0.90 0.86 0.68 0.75 0.71 0.61 0.68 0.64 0.88 0.97 0.92 0.64 0.72 0.68 0.66 0.73 0.70

+34% average F1 w.r.t. RTED and PDiff, respectively. In the
Across apps use case, WEBEMBED scores an average F1 of
92%, a +35%, and +31% increase w.r.t. RTED and PDiff,
respectively. Statistical tests confirmed that the differences
in accuracy are statistically significant (p-value < 0.05) with
a large effect size in all use cases, except Across apps, in
which the differences between WEBEMBED and RTED are
statistically significant with a medium effect size.

RQ2: WEBEMBED achieves the highest F1 scores (84–
92%, on average) over all use cases: neural embeddings
are able to approximate the ground truth model better
than structural and visual techniques. The differences
with the baseline approaches are statistically significant
in all use cases, with a medium to large effect size.

4.6.3 RQ3 (code coverage)

Table 6 shows the code coverage results for each tool,
grouped by use case. Considering the average scores over all
nine apps, the scores for WEBEMBED (WE) are consistently
the best across all use cases.

For the Beyond Apps use case, WEBEMBED achieves +6-
14% code coverage w.r.t. RTED and PDiff. Concerning the
Across Apps use case, WEBEMBED achieves +12–13% code
coverage w.r.t. RTED and PDiff. About the Within Apps
use case, WEBEMBED achieves +20–36% code coverage w.r.t.
RTED and PDiff. The differences in code coverage between
WEBEMBED and PDiff are statistically significant for all
use cases (i.e., p-value < 0.05, with small/negligible/medium
effect sizes). The differences in code coverage between
WEBEMBED and RTED are significant only for the Within
App use case, with a small effect size.

RQ3: The tests generated from WEBEMBED crawl
models achieve the highest code coverage scores over all
use cases (up to +36% improvement) thanks to the more
accurate and complete web app models generated using
neural embeddings.

TABLE 6: RQ3 Code Coverage. The best average scores are
boldfaced.

Beyond Apps Across Apps Within Apps

WE RTED PDiff WE RTED PDiff WE RTED PDiff

App1 14.54 13.76 10.23 14.68 14.78 13.94 15.19 14.06 14.06
App2 12.89 12.49 3.50 13.27 7.90 4.71 28.81 23.87 5.45
App3 19.04 15.66 18.39 19.18 15.75 17.44 34.97 22.27 23.08
App4 16.19 10.50 8.75 17.55 10.50 8.75 18.94 17.49 9.17
App5 18.13 13.52 15.80 22.65 15.79 18.36 26.60 16.76 18.35
App6 15.27 15.27 13.78 13.46 13.78 13.78 13.46 13.78 13.78
App7 56.31 56.11 54.13 56.51 56.11 55.57 58.11 56.98 55.67
App8 28.78 28.78 28.78 29.06 28.78 28.78 45.51 30.74 30.74
App9 31.63 32.28 31.94 31.94 32.11 32.11 33.44 32.42 32.11

Avg. 23.64 22.04 20.59 24.26 21.72 21.49 30.56 25.38 22.49

4.7 Final Remarks

Overall, WEBEMBED was more effective than the considered
baseline approaches across all use cases. From a practical
point of view, looking at the accuracy scores in conjunction
with code coverage, we suggest: (1) using WEBEMBED (Be-
yond apps) if no labeling budget is allowed for developers.
Indeed, the effectiveness of this configuration is close to
WEBEMBED (Across apps), which instead requires a non-
negligible labeling cost. (2) using WEBEMBED (Within apps)
in all other cases, especially if the labeling cost is affordable.
Indeed, the gain in code coverage is significant (+29–26%
w.r.t. the Beyond and Across apps use cases).

4.8 Threats to Validity

4.8.1 Internal validity

We compared all variants of WEBEMBED and baselines
under identical experimental settings and on the same
evaluation set (Section 4.2). In our experiments, a crawling
time of 30 mins allowed all crawls to explore all logical
pages of the AUTs within the timeout. Setting a shorter
crawling time (<30mins) would favor the techniques that
make better use of a limited crawling budget (i.e., WebEm-
bed and RTED). The test generation budget refers to the
crawling time allowed for model inference, as the tests
are extracted directly from the crawl sequences. The main
threat to internal validity concerns our implementation of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 10

the testing scripts to evaluate the results, which we tested
thoroughly.

4.8.2 External validity

The limited number of subjects in our evaluation poses a
threat in terms of the generalizability of our results to other
web apps. Moreover, we considered only the embeddings
produced by Doc2Vec [?], and WEBEMBED’s effectiveness
may change when considering other algorithms.

4.8.3 Reproducibility

All our results, the source code of WEBEMBED, and all
subjects are available [?].

5 DISCUSSION

6 RELATED WORK

6.1 End-to-End Web Test Automation

Andrews et al. [?] propose a test generation approach based
on a hierarchical finite state machine model to achieve full
transition coverage. Biagiola et al. [?], [?] use Page Objects
to guide the generation of tests. Marchetto et al. [?] propose
a combination of static and dynamic analysis to model the
AUT into a finite state machine and generate tests based on
multiple coverage criteria.

Mesbah et al. [?] propose ATUSA, a tool that leverages
the model of the AUT produced by Crawljax to automat-
ically generate test cases to cover all the transitions of the
model. Biagiola et al. [?] propose DANTE, an automated
approach to test generation, aimed at producing minimal
test suites from web app crawlings. DANTE turns the raw
output of a crawler into executable test cases by reusing the
same inputs used upon crawling, resolving dependencies
among tests and eliminating redundant tests. Sunman et
al. [?] propose AWET, an approach that leverages existing
test cases, possibly obtained via capture-and-replay in an
exploratory testing fashion, to guide crawling.

These works do not address the redundancy in the web
app model during crawling due to an ineffective SAF. These
test generators can be used in conjunction with WEBEMBED,
to increase the accuracy of the inferred web app models.

6.2 Empirical Studies on Near-Duplicates

Fetterly et al. [?] study the nature of near-duplicates during
software evolution, reporting their low variability over time.
Yandrapally et al. [?] compares different near-duplication
detection algorithms as SAFs in a web crawler. The paper
reports on the impossibility of finding an optimal threshold
that can accurately detect functional near-duplicates across
web apps. Motivated by these findings, in our paper, we
use ML classifiers instead of threshold-based classifiers.
Moreover, we adopt neural embeddings applied to web
pages and use the best detection algorithms from the study
by Yandrapally et al. [?].

6.3 Automated Near-Duplicate Detection

Regarding detection of near-duplicates within the same
AUT, Crescenzi et al. [?] propose a structural abstraction
for web pages and a clustering algorithm based on such
abstraction. Di Lucca et al. [?], [?] evaluate the Levenshtein
distance and the tag frequency for detecting near-duplicate
web pages. Stocco et al. [?] use clustering on structural
features as a post-processing technique to discard near-
duplicates in crawl models. Corazza et al. [?] propose the
usage of tree kernels, functions that compute the similarity
between tree-structured objects, to detect near-duplicates.

Concerning detection of near-duplicates across AUTs,
researchers mainly considered clustering techniques on raw
structural features [?], [?], [?], [?], [?], [?], [?], [?]. Other
works, such as the one by Henzinger [?], use shingles, i.e.,
n-grams composed of contiguous subsequences of tokens,
to ascertain the similarity between web pages. Manku et
al. [?] use simhash to detect near-duplicates in the context
of information retrieval, plagiarism, and spam detection.
Yandrapally and Mesbah [?] use web page fragments in
which they combine both visual and structural features to
detect near-duplicates.

In this paper, we consider HTML neural embeddings to
train an ML classifier for near-duplicate detection and we
illustrate that its usage for functional testing of web apps
outperforms state-of-the-art techniques [?].

6.4 Embeddings in Software Engineering

Alon et al. [?] present code2vec, a neural model for learning
embeddings for source code, based on its representation
as a set of paths in the abstract syntax tree. Hoang et
al. [?] propose CC2Vec, a neural network model that learns
distributed representations of code changes. The model is
applied for log message generation, bug fixing patch identi-
fication, and just-in-time defect prediction.

Feng et al. [?] use representation learning applied across
web apps for phishing detection. Similarly, we use embed-
dings produced by Doc2Vec on HTML features to learn
a neural representation of the web pages, both beyond,
across, and within web apps. Lugeon et al. [?] propose
Homepage2Vec, an embedding method for website clas-
sification. Namavar et al. [?] performed a large-scale ex-
periment comparing different code representations to aid
bug repair tasks. In this work, we propose an embedding
method that works at a finer granularity level and that can
integrate both structural (HTML tags) and textual (content)
information. We study this embedding in the context of
automated crawling and web testing.

Among the grey literature, Ma et al. [?] propose Graph-
Code2Vec, a technique that joins code analysis and graph
neural networks to learn lexically and program dependent
features to support method name prediction. Dakhel et
al. [?] propose dev2vec, an approach to embed developers’
domain expertise within vectors for the automated assess-
ment of developers’ specialization. Jabbar et al. [?] propose
to encode the test execution traces for test prioritization.

Differently, we use the embeddings of Doc2Vec to train
an ML classifier that is used as SAF within a crawl-based
test generator for functional testing.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XY, NO. X, XYZ 2020 11

7 CONCLUSIONS AND FUTURE WORK

In this paper, we aim to improve the crawlability of modern
web applications by designing and evaluating WEBEMBED,
a novel state abstraction function for web testing based on
neural embeddings of web pages. Neural embeddings are
used to train machine learning classifiers for near-duplicate
detection. We demonstrate their effectiveness in inferring
accurate models for functional testing of web apps, while
also discussing their cost for developers in three settings,
namely beyond, across and within web apps. Our results
show that crawl models produced with WEBEMBED have
higher precision and recall than the ones produced with ex-

isting approaches. Moreover, these models allow test suites
generated from them to achieve higher code coverage.

Future work includes exploring other forms of embed-
dings to further improve the accuracy of WEBEMBED. For
example, usage of visual embeddings on the web screen-
shots, e.g., with autoencoders, will be explored, as well as
hybrid solutions.

ACKNOWLEDGMENTS

This work was partially supported by the H2020 project
PRECRIME, funded under the ERC Advanced Grant 2017
Program (ERC Grant Agreement n. 787703).

	Introduction
	Background
	Automated Web Model Inference
	Near-duplicate States
	Neural Embeddings and Doc2Vec

	Approach
	Training Doc2Vec
	Token sequence extraction
	Model Implementation and Training

	Training State Abstraction Function
	Crawling
	The Crawler
	Usage of the State Abstraction Function

	Test Creation
	Implementation

	Empirical Study
	Research Questions
	Datasets
	Baselines
	Use Cases
	Beyond apps
	Across apps
	Within apps

	Procedure and Metrics
	RQ1 (near-duplicate detection)
	RQ2 (model quality)
	RQ3 (code coverage)

	Results
	RQ1 (near-duplicate detection)
	RQ2 (model quality)
	RQ3 (code coverage)

	Final Remarks
	Threats to Validity
	Internal validity
	External validity
	Reproducibility

	Discussion
	Related Work
	End-to-End Web Test Automation
	Empirical Studies on Near-Duplicates
	Automated Near-Duplicate Detection
	Embeddings in Software Engineering

	Conclusions and Future Work

