
Dependency-Aware Web Test Generation
Matteo Biagiola∗, Andrea Stocco†, Filippo Ricca ‡, Paolo Tonella†

∗Fondazione Bruno Kessler, Trento, Italy, biagiola@fbk.eu
†Software Institute - USI, Lugano, Switzerland, {andrea.stocco, paolo.tonella}@usi.ch

‡Università degli Studi di Genova, Genoa, Italy, filippo.ricca@unige.it

Abstract—Web crawlers can perform long running in-depth
explorations of a web application, achieving high coverage of
the navigational structure. However, a crawling trace cannot be
easily turned into a minimal test suite that achieves the same
coverage. In fact, when the crawling trace is segmented into
test cases, two problems arise: (1) test cases are dependent on
each other, therefore they may raise errors when executed in
isolation, and (2) test cases are redundant, since the same targets
are covered multiple times by different test cases. In this paper,
we propose DANTE, a novel web test generator that computes
the test dependencies associated with the test cases obtained from
a crawling session, and uses them to eliminate redundant tests
and produce executable test schedules. DANTE can effectively
turn a web crawler into a test case generator that produces
minimal test suites, composed only of feasible tests that contribute
to achieve the final coverage. Experimental results show that
DANTE, on average, (1) reduces the error rate of the test cases
obtained by crawling traces from 85% to zero, (2) produces
minimized test suites that are 84% smaller than the initial ones,
and (3) outperforms two competing crawling-based and model-
based techniques in terms of coverage and breakage rate.

Index Terms—Web Testing, Crawling-based Test Generation,
Dependency Detection, Test Minimization

I. INTRODUCTION

Crawlers are appealing tools for testers as they can ef-
fectively and rapidly explore the state space of a web ap-
plication. However, deriving executable functional test cases
from a sequence of crawled pages and events is not trivial.
First, such sequence is typically very long, and it would be
inefficient to execute it entirely within a single test case.
Therefore, crawlers segment such a sequence into meaningful
sub-sequences, according to some criteria [1], [2]. Such sub-
sequences better isolate the different functionalities exercised
by the crawler, and can be considered as separate test cases.
Second, the obtained sub-sequences may have dependencies
on web app states created by previous sub-sequences [3], [4],
[5], which must be resolved. Third, since crawlers are designed
to perform continuous, repeated explorations with different
randomly generated inputs, the segmented sequences may also
be redundant, which increases the test suite runtime, without
benefiting the overall coverage of the web app functionalities.
In our experiments, the segmented crawling trace produced 69
candidate test cases on average, of which 59 were redundant.

Existing works [1], [6], [7], [8] use crawlers to support test
generation quite differently. Particularly, navigational model
of the web app is used as main driver for the generation

of tests. The web pages visited by the crawler upon its
exploration are abstracted into DOM states, connected by
state transitions that represent the actions performed by the
crawler (e.g., clicking on hyperlinks, or filling in forms).
Given some model-based adequacy criterion, such as transition
coverage, tools like Atusa [1] derive a set of paths from the
navigational model. Such paths represent abstract test cases
that can be turned into concrete, executable test cases by
supplying proper input values. The main limitation of such
model-based test generation techniques is that they have to
cope with the feasibility problem, i.e., finding proper paths
in the navigational model along with associated input values,
such that, upon execution of the web application under test,
the desired navigation is taken. Determining if a path is
feasible is in general undecidable. Infeasibility may be due to
dependencies on previous application states that the selected
path cannot reproduce or on the impossibility to generate input
values satisfying the path constraints [7]. Our experiments
show that most (85%) of the paths obtained by segmenting
the trace produced by our crawler raise errors if executed
in isolation. While not all of them are indeed infeasible, our
findings confirm that turning a crawled path into an executable
test case cannot be easily achieved by just replaying the
crawling path with the same inputs used originally.

In this paper, we propose a novel approach to web test
generation that combines crawling, test dependency detec-
tion, and test minimization. Our approach, implemented in a
tool called DANTE (Dependency-Aware Crawling-Based Web
Test Generator), takes as input the raw segmented crawling
trace produced by a crawler, computes and validates the test
dependencies between each sub-sequence, ensuring that any
resulting test suite (sub-list of segmented sequences) that
respects them will not result in any test breakage [9]. Last,
DANTE uses test dependencies as a set of constraints for
detecting and eliminating redundant tests using a SAT solver.

We evaluated DANTE on five real-world web applications.
DANTE generated only breakage-free (i.e., feasible) test suites,
while the error rate of the test cases obtained by segmenting
the initial crawling trace was as high as 85%. Such executable
test cases were obtained by discarding as much as 84% redun-
dant test cases from the initial set produced by the crawler,
ensuring at the same time that the original code coverage
is unchanged. Our results also show that tests minimized by
DANTE achieve substantially higher code coverage than two
competing techniques (i.e., Crawljax and Atusa).

Our paper makes the following contributions:978-1-7281-5778-8/20/$31.00 ©2020 IEEE
DOI 10.1109/ICST46399.2020.00027

• The first dependency-aware crawling-based approach for
end-to-end web test generation. Our approach introduces
dependency analysis of the tests obtained through crawl-
ing and constraint solving of such dependencies to min-
imize redundant test cases.

• An implementation of our algorithm in a tool named
DANTE [10].

• An empirical evaluation of DANTE on a benchmark of
five open-source web applications, including a compari-
son with two state of the art solutions.

II. BACKGROUND

In this section, we illustrate the functioning of a web
crawler, and how it supports the creation of web tests, along
with the main limitations on a motivating example.

We use Crawljax [1], [2] as a reference. Crawljax (hereafter
referred to as the crawler) has been recognized as the state-of-
the-art crawler for web applications by a large empirical study
comparing different crawlers [11].

A. Automated Crawling of Web Applications

Crawljax can explore JavaScript web applications through
automatic dynamic analysis of UI-state changes in the browser.
The crawler scans the DOM tree of each web page, spots
candidate elements that are capable of changing the DOM state
(i.e., clickables), fires events on those candidate elements, and
incrementally creates a graph of the web application in which
nodes are the dynamic DOM instances of the web pages, and
edges are event-based transitions between them.
Exploration Strategy. The crawler explores the web applica-
tion according to a graph visit algorithm, such as breadth-first
or depth-first visit [12], [13]. The default option in Crawljax
is the depth-first visit: on each DOM state, one clickable is
selected and the event associated with it is fired. If such event
reveals a new DOM state, the visit continues from the newly
discovered DOM state. Whenever no more candidate elements
are present in a given DOM state, or no new DOM states
are discovered in a given crawl path, the crawler backtracks
its exploration to the first DOM state containing unexplored
candidate elements. The order in which candidate elements are
selected within a DOM state can be changed. For instance,
FeedEx [6] selects the clickable element to consider based
on a linear combination of factors aimed at maximizing the
diversity of the exploration.

Another aspect that impacts the crawler’s exploration is
the selection of the same clickable element multiple times
within different DOM states. For instance, let us consider
a web application having a navigation bar with menu items
which are displayed in all possible DOM states. The tester
can decide whether Crawljax should consider each menu
item only once during exploration, or, differently, whether it
should consider them multiple times in different DOM states.
The rationale for choosing the former option is to make the
exploration faster, assuming that all menu items, when fired
upon, always bring the web application to the same DOM state
deterministically. However, this assumption might not always

be true, especially for modern web applications such as single-
page web applications. Therefore, the latter option may ensure
a more thorough exploration.
State Abstraction Function. To avoid redundancies, DOM
states that are identical or similar to previously encountered
DOM states should be discarded. The problem of detecting
already visited DOM states is delegated to the state abstraction
function, which is a boolean function that decides if a new
DOM state is found after an event is fired [14]. The state
abstraction function integrated within Crawljax compares the
equality of the string representation of the DOM of each
web page, which ensures fast comparisons, and therefore,
more exploration capabilities. However, other state abstraction
functions have been proposed, e.g., comparing the DOM tree
by the tree edit distance [6].
Sequence Segmentation. Given a web application’s URL,
an exploration strategy, and a state abstraction function,
the crawler performs an exploration of the web application
state space and returns a (possibly long) sequence of visited
pages. The crawler segments such sequence into shorter sub-
sequences that can be used as test cases, which replay the
actions of the crawler on the web application. On the contrary,
replaying the entire sequence at once would require as much
execution time as the crawling phase, if used as a single test
case. Crawljax segments the crawling sequence whenever no
more candidate elements are present in a given DOM state, or
no new DOM states are discovered in a given crawl path. In
this case, the sequence is ended (i.e., segmented) in that DOM
state, and the crawler continues its exploration from the first
unvisited DOM state, or from the initial DOM state (i.e., the
index page).

B. Test Generation supported by Crawling

Crawling Trace-based Test Generation and its Limitations.
The list of segmented sub-sequences retrieved by a crawler
represents candidate test cases. However, two main problems
may occur and need to be addressed.

First, after segmentation, the individual test cases may be
dependent on each other. Test dependencies are due to the web
application state being modified by actions performed by the
crawler in previously executed test cases [3], [4], [5].

Second, test redundancy may appear as a consequence of the
length of the navigation performed by the crawler. Long navi-
gations are indeed desirable, because they have more chances
to explore the web application in depth. On the other hand,
thorough explorations may also include sub-segments that are
equivalent according to some chosen adequacy criterion, such
as code/model coverage.

Other factors affecting the degree of test redundancy are the
crawler’s state abstraction function, and the strategy used to
select the next DOM element to explore within a DOM state
(Section II-A). For what concerns state abstraction, when the
state abstraction function is too coarse-grained, many parts
of the web application would be unexplored because many
DOM states would be considered the same. Conversely, if the
state abstraction function is too permissive, many similar DOM

 Your Shop —> Products —> Items: 1

Category 1

Category 2

Category 3

Bitchip $ 29.89

Quantity

Subtotal

Remove

Total $ 29.89

Continue

Checkout

1

$ 29.89

Category 1

Category 2

Category 3

Ops $ 34.22

Category 1

Category 2

Category 3

Teal $ 25.89

 Your Shop —> Products —> Items: 3 Your Shop —> Products —> Items: 6

Quantity

Subtotal

Remove

Total $ 81.67

Continue

Checkout

2

$ 51.78

Quantity

Subtotal

Remove

Total $ 184.33

Continue

Checkout

3

$ 102.66

Index

5

Index Product
List

select first category select product
Product

Page

add to cart
Product

Page

back
Index

Products
List

select product

1

Shop
Cart

go to shop cart
Checkout

checkout

back

Index

select second
categoryProduct

Page

3
add to cart

Product
Page

back
Shop
Cart

go to shop cart
Checkout

checkout

Products
List

select third
category select product

Product
Page

add to cart
Product

Page

back

Index Shop
Cart

go to shop cart
Checkout

checkout …

2

4

6

Index

back

Fig. 1: E-commerce example and generated crawling trace containing dependent and redundant sequences.

states would be considered different, leading to many redun-
dant test cases. For what concerns DOM element selection,
when the crawler considers candidate elements multiple times,
it can explore the web application more deeply, at the cost of
potentially increasing the redundancy of the tests.
Model-based Test Generation and its Limitations. The
output of Crawljax is the navigational model of the web appli-
cation, in the form of a state-flow graph of the abstracted DOM
states and the event-based interactions between them [1]. Such
a model can be used for generating test cases as well, and
different solutions have been proposed.

The approach implemented by Atusa [2] extracts test cases
from the model using a k-shortest path algorithm, a gener-
alization of the shortest path problem in which several paths
in increasing order of length are sought for path selection.
Specifically, Atusa collects all sinks in the crawled graph, and
computes the shortest path from the index page to each of
them. Crawl paths are completed by randomly generated in-
puts, or by reusing the same inputs used during the exploration.
A drawback of this strategy is the high chance of producing
infeasible test cases. Infeasibility may be due to dependencies
on previous application states that the selected path cannot
reproduce or on the impossibility to generate input values
satisfying the path constraints [7].

C. Motivating Example

Figure 1 (left) shows a sample e-commerce web application.
A typical navigation consists in the user selecting one product
category, and the desired product in the Product List
page. Then, in the Shop Cart page, the user can indicate the
desired number of items, remove unwanted items, or finalize
the purchase. The top bar shows the navigation performed
by the user on the application, and the number of products
currently present in the shopping cart. For instance, in Figure 1
(left), the user selected one Bitchip product from the first
category, two Teal products from the second category, and
three Ops products from the third category.
Crawling. Figure 1 (right) shows a possible exploration per-
formed by the crawler on our e-commerce web application
that results in a long sequence of visited DOM states. For
simplicity, suppose the crawler adopts the default depth-first
crawling exploration strategy (i.e., clicking the same web
elements only once) and a state abstraction function based
on DOM string equality.

In the represented sequence, the crawler selects the first
category (Category 1) and the corresponding product. Then,
it adds the product to the cart, and navigates back to the
index page. Then, the crawler accesses the shopping cart and
performs the checkout, before returning to the index page. The
same crawling path is repeated for the other two categories
(Category 2 and Category 3); the corresponding products are
also checked out.
Segmentation. Suppose that in our e-commerce example,
the crawler segments the crawling trace whenever it reaches
the first visited page (e.g., Index). In this case, six (6) sub-
sequences are generated, as shown in Figure 1 (the first DOM
state of each new sub-sequence is marked by an incremented
number). For instance, the first sub-sequence ¶ ends after
having added the first product to the shopping cart, whereas
the second sub-sequence · ends after having checked out the
first product. The other sub-sequences are segmented similarly.
Dependent Tests. After segmentation, the resulting test cases
are dependent on the application state being modified by the
actions the crawler performed in previously executed tests. For
instance, sub-sequence · (i.e., checking out the first product)
depends on sub-sequence ¶ (i.e., selecting the first product in
the shopping cart). Similarly, sub-sequence ¹ depends on sub-
sequence ¸, and sub-sequence » depends on sub-sequence º.

If we execute each of those tests in isolation, the first test
¶ executes correctly, whereas the second one · breaks. This
is due to the initial application state, which does not contain
the shopping cart item that the second test needs for checkout,
since that item is created by the first test.

On the contrary, if tests obtained after segmentation are
executed in the same order in which they were crawled, no
breakage occurs (i.e., by running in sequence tests ¶–»).
On the contrary, if we want to generate independent test
cases, then test dependencies should be known and properly
addressed [4], [5], [15], [16], [17], [18], [19].
Redundant Tests. The test cases shown in Figure 1 are also
redundant considering the coverage of functionalities. The first
two sub-sequences ¶–· cover a scenario in which a product
is selected and checked out. Sub-sequences ¸–¹ and º–»
repeat the same scenario, with different data. If such products
are retrieved by the server-side of the web application, the
overall client-side code coverage would not change when
executing these last two tests. Therefore such tests could
be removed without affecting the adequacy of the test suite
(considering client-side code coverage as adequacy criterion).

t1 t2 t3t4 t5 t6

Dependant & Redundant
Test Sequences

t1

t2 t3

t5

Initial
Test Dependency

Graph Test Dependency
Analysis

Web App
Crawling

SAT-solver based
Test Minimization

1

Bi-objective
Filter

t7 t8 t9

t4

2 Coverage
Reports

Minimized
Test Suite

t1 t2
t4 t5

t1

t2

t5

Reduced
Test Dependency

Graph

t4

Coverage-Driven
Filter

Fig. 2: High-level overview of our approach for dependency-aware web test generation and minimization

III. APPROACH

Figure 2 illustrates the overall approach, which takes as
input a segmented crawling sequence retrieved by a crawler
when executed on a given web application (Section II). Test
dependency analysis is used to retrieve and validate the
dependencies between each sub-sequence (Test Dependency
Analysis), which are subsequently used as a set of constraints
within a SAT solver to eliminate redundant test cases (SAT
solver-based Test Minimization).

Test dependency analysis is, however, a computationally
expensive task, because the total number of possible depen-
dencies is quadratic in the number of test cases. Automatically
identifying the entire subset of true dependencies requires
exponential analysis time [20], [15], [21]. In fact, in the
absence of any preliminary filtering, each test case in the
original sequence must be assumed as possibly dependent on
all its predecessors, resulting in n(n− 1)/2 (with n being the
number of test cases) candidate dependencies to be validated
by dependency analysis, of which only a small subset may
actually represent true dependencies.

To reduce the cost of dependency analysis, in this work we
propose and evaluate two alternative filtering heuristics that
can reduce the initial number of dependencies to be validated.

The first filtering heuristic pre-selects only the tests that
contribute to web application coverage (coverage-driven fil-
ter), while discarding the unnecessary ones, and making sure
that dependents of the selected tests are included. The second
filtering heuristic is based on bi-objective optimization (bi-
objective filter), where the two objectives being minimized
are: (1) the number of dependencies kept for successive
dependency validation, and (2) the estimated cost of recovery
of the incorrectly filtered dependencies.

In the second phase, test suite minimization aims at elimi-
nating all redundant test cases, i.e., tests that do not contribute
to coverage and are not needed due to some dependency.

The output of our approach is a minimized test suite in
which (1) no redundant test case are present, and (2) all test
schedules that respect the dependencies can execute indepen-
dently and without errors.

A. Test Dependency Analysis

For dependency retrieval and validation we use an exist-
ing tool named TEDD [21], which automatically detects the

occurrence of dependencies among web tests. From a given
test suite, TEDD retrieves an initial set of dependencies to be
validated, which may include both spurious dependencies to
be removed as well as missing dependencies to be recovered.
The output of TEDD is a test dependency graph such that all
test schedules that respect its dependencies execute correctly.

TEDD was proposed for validating dependencies in human-
written tests, leveraging filtering techniques based on natural
language processing of the test case identifiers [21]. In this
paper, we target automatically generated test suites, which
do not include meaningful identifiers. In our preliminary
experiments, TEDD does not terminate within a timeout of
48 hours (2 days), when applied to the complete (quadratic),
unfiltered test dependency graph. Hence, we designed two
novel filtering heuristics, aiming at making TEDD applicable
to automatically generated test cases, which we describe next.

1) Coverage-Driven Filter: The first proposed filter aims to
reduce the number of initial tests, thus making the initial test
dependency graph smaller. Specifically, the filter retains only
the tests that contribute to the coverage of the web application,
along with their dependent tests. The filter is independent
from the coverage criterion (e.g., any model/transition or
code/branch coverage can be adopted). We hereafter refer
to element as the unit of coverage specific to the selected
coverage criterion (e.g., a transition for transition coverage, or
a branch for branch coverage).

The filtering is performed as follows. The initial test se-
quence is executed in the order retrieved by the crawler, to
gather the needed coverage information. A greedy algorithm
starts by selecting the test that achieves maximum coverage
(in case of multiple candidates, the selection is random). Then,
it repeatedly adds the test that covers the most additional
elements, with respect to the coverage achieved by the already
selected test cases, until the final coverage of the whole
test suite is reached. Then, the obtained filtered test suite is
executed. If no breakages occur, our approach continues with
the dependency analysis by TEDD. On the contrary, if tests
break because some other test needs to be executed first, an
automated fixing procedure is triggered, which we detail next.
Fixing Missing Test Dependencies. Algorithm 1 shows our
automated procedure for fixing missing dependencies. The
algorithm takes as input the selected test suite Ts and the
original test suite To as generated by the crawler.

Algorithm 1: Test suite fixing algorithm
Input : Ts: test suite with coverage driven selected test

cases
To: test suite in its original order o

Output: Ts: updated test suite with test dependencies fixed
1 brokenTest ← EXECUTETESTSUITE(Ts)
2 if brokenTest = null then
3 return Ts

4 windowLength ← 1
5 while true do
6 preconditions ← COMPUTEPRECONDITIONS(To, Ts,

brokenTest)
7 newBrokenTest ← null
8 i← windowLength
9 while i < |preconditions| do

10 preconditionsToAdd ← SUBSET(preconditions, i,
windowLength)

11 newBrokenTest ←
ADDANDEXECUTE(preconditionsToAdd, Ts)

12 if newBrokenTest = null then
13 return Ts

14 if newBrokenTest 6= brokenTest ∧
ORDER(newBrokenTest) > ORDER(brokenTest) then

15 break
16 Ts ←

REMOVEPRECONDITIONS(preconditionsToAdd, Ts)
17 i← i + windowLength

18 if newBrokenTest = brokenTest then
19 windowLength ← windowLength + 1
20 else
21 brokenTest ← newBrokenTest

The EXECUTETESTSUITE procedure executes Ts and, if
no breakages are detected (line 3), the algorithm terminates.
On the contrary, the first test case that breaks is returned
(brokenTest), and considered for dependency fixing.

The algorithm computes the preconditions of brokenTest
(line 6) by considering all tests in the original test suite To

that are placed before it, and that are not yet included in
Ts. The loop (lines 9–17) adds one precondition at a time
(initially, windowLength = 1), and checks if the test suite with
the added precondition executes correctly (line 11). If so, the
algorithm terminates (newBrokenTest = null). Otherwise, the
previously added preconditions are removed from Ts (line 16)
and the loop (lines 9–17) continues. The loop is interrupted
also when newBrokenTest follows (hence, it has to replace)
brokenTest (lines 14–15). The ORDER function computes the
index of the test case given as input in the original test
suite To. Such index defines an order relation between test
cases that corresponds to the execution order given by crawler
segmentation (Section II-C). If newBrokenTest is equal to
brokenTest (lines 18–19), the size of the window is increased.

Let us consider as example a test suite
T = {t1, t2, t3, t4, t5, t6, t7, t8, t9}. Suppose that the coverage-
driven filter selects t1 and t5, hence Ts = {t1, t5}, and that
t5 depends on t2 and on t4 (indicated as t5 → t2 and
t5 → t4). Algorithm 1 tries to execute Ts but t5 breaks.

The preconditions of t5 are {t2, t3, t4}. The algorithm tries
to add them one at a time, but let us suppose that each one
in isolation is not sufficient to fix t5. Then, at the end of
the first iteration, the window size is increased to 2. The
algorithm adds {t2, t3} first and then {t3, t4} but none of the
two sets of tests fixes t5, therefore they are both removed
from Ts. Finally, the window length is increased to 3, and
the tests {t2, t3, t4} are added. The broken test t5 passes,
and Ts = {t1, t2, t3, t4, t5} is the fixed filtered test suite. It
can be noticed that Ts contains one spurious dependency,
i.e., t5 → t3, to be removed by TEDD during dependency
analysis. Such a spurious dependency is a consequence of
the adopted heuristics, which adds all test cases inside the
current window, rather than taking all the possible subsets
of the current window (the latter would incur an exponential
computational cost).

2) Bi-objective Filter: The second proposed filter aims
at reducing the number of dependencies from the complete
(quadratic) graph. The general idea is to execute TEDD on a
filtered graph that contains as few dependencies as possible,
while at the same time minimizing the estimated (worst case)
recovery cost that TEDD may incur when identifying and re-
introducing missing dependencies. Let T = {t1, . . . , tn} be
the set of all tests, and let D = {d11, . . . , dnn} be the set of
all dependencies associated with the original crawl order. Each
dependency dij is defined as:

dij =

{
1, if i > j.

0 otherwise.

Let S = {s11, . . . , snn} be a filtering matrix over D where
sij is 0 if the dependency dij is filtered; and 1 otherwise
(sij = 0 for all j ≥ i). For each test ti with 2 ≤ i ≤ n, let
us consider all outgoing dependencies that are filtered in S
(i.e. sij = 0, while dij = 1). Let Dd(Si) be the set of filtered
dependencies of node i which are direct, i.e. there is no other
path in S that could connect such pair of tests. Let Id(Si) be
the set of filtered dependencies of node i which are indirect,
i.e., there exists at least one path in S between such pair of
tests. By construction, these two sets are disjoint (Dd(Si) ∩
Id(Si) = ∅). Correspondingly, we define the following two
objective functions:

minimize deps(S) =
∑
sij∈S

sij (1)

minimize cost(S) =
n∑

i=2

(
|Dd(Si)|+

1

2
|Id(Si)|

)
(2)

Equation 1 counts the number of unfiltered dependencies in
S; such sum has to be minimized. Equation 2 estimates the
cost of recovery of each dependency that is filtered in S. In the
worst case, all filtered direct (Dd(Si)) and indirect (Id(Si))
dependencies are true dependencies, whose recovery cost is
quadratic [21]. The second contribution to the cost of Equa-
tion 2 is halved because each indirect filtered dependency may
already be included in the graph through other dependencies.

t1

t2 t3

t4

cost(S) = 1/2 + 1 = 1.5

deps(S) = 4

S = 1 1 1 0 1 0
s21 s31 s32 s41 s42 s43

Id(S4) = {s41}

Dd(S4) = {s43}

Fig. 3: Bi-objective filtering example. sij with i = j are not
represented since they are 0 by definition.

We solve this minimization problem by means of bi-
objective optimization. The optimal solution is a Pareto front
with two dimensions (deps and cost), populated by the non-
dominated solutions (i.e., filtering matrices) discovered by the
algorithm. To obtain one single filtering matrix from the Pareto
front of solutions, we compute the derivative on each point in
the Pareto front, and choose the point with highest derivative
(i.e., highest gain on both deps and cost).

Figure 3 shows an example of how the two objective func-
tions are computed. S is the considered dependency filter that
is illustrated by the dependency graph on the right hand side
of the figure. Dashed arrows represent filtered dependencies
(sij = 0). There are six dependencies in S, and only two
are filtered, hence deps(S) = 4. The first one s41, which
corresponds to t4 → t1, is a filtered indirect dependency,
because there is a path between t4 and t1 that passes through
t2. If t4 → t1 were true, it would have to be recovered only if
t4 → t2 or t2 → t1 are deemed as invalid dependencies during
validation. This is why the cost of recovering an indirect
dependency has a halved weight than the cost of recovering
a direct dependency. The second one s43 is a filtered direct
dependency which has a recovery cost of one.

B. SAT solver-based Test Minimization

Our approach adopts a SAT solver [22] to find optimal
solutions to the test suite minimization problem. We encode
the test dependencies as a set of pseudo-boolean constraints
that are translated to a SAT instance. Then, the SAT instance
is solved using a SAT solver.

The problem formalization is as follows. Let us consider
n boolean variables ti ∈ {0, 1}, one for each test case in
T . If ti = 1, then the corresponding test case is included in
the solution, otherwise (ti = 0) the test case is excluded. Let
C = {c1, . . . , cn} be the set of costs of running each test
(ci ∈ R), and let E = {e1, . . . , el} be the set of elements that
we want to cover with the tests. The matrix M = {mik}, of
dimension n× l, is then defined as:

mik =

{
1, if ek is covered by test ti
0, otherwise

The objective of minimization is to find a subset of tests
X ⊆ T with minimum cost such that (1) all elements in E
are covered, and (2) the validated dependencies D = {dij}
between tests are respected. Formally:

t1

t2 t3 t4

t6e1 e2 e3 e4 e5 e6
t1 1 0 1 1 0 0
t2 0 1 1 1 0 0
t3 1 0 0 0 1 0
t4 1 1 0 0 1 0
t5 0 0 1 1 1 0
t6 0 0 0 0 0 1

M

d21

d62
t5

Fig. 4: Minimization example

minimize
n∑

i=1

citi (3)

subject to:

n∑
i=1

mikti ≥ 1, 1 ≤ k ≤ l (4)

∀dij ∈ D, dij = 1 ∧ ti = 1 =⇒ tj = 1 (5)

Equation 3 is the objective function. It is a linear com-
bination of selected tests along with the related execution
cost coefficients. The goal is to find a test suite having the
smallest execution cost. Equation 4 represents the coverage
constraints, one for each element ek to be covered. Each
coverage constraint specifies that at least one test covering
each element ek must be included in the final test suite X .
Equation 5 represents the dependency constraints, one for each
validated dependency dij = 1. The dependency constraint
states that if a dependee test ti is included in the final test
suite X , then its dependent tj must be included as well.

For example, let us consider T = {t1, t2, t3, t4, t5, t6} and
C = {3.0, 3.0, 2.5, 3.5, 4.0, 1.0}. Figure 4 shows the coverage
matrix M on the left hand side and the test dependency
graph TDG on the right hand side. Below, we list both the
coverage constraints, on the left hand side, and the dependency
constraints, on the right hand side:

t1 + t3 + t4 ≥ 1 (e1) t2 = 1 =⇒ t1 = 1 (d21)

t2 + t4 ≥ 1 (e2) t6 = 1 =⇒ t2 = 1 (d62)

t1 + t2 + t5 ≥ 1 (e3, e4)

t3 + t4 + t5 ≥ 1 (e5)

t6 = 1 (e6)

The first coverage constraint specifies that at least one of the
tests {t1, t3, t4} must be included in the solution because such
tests cover the element e1. The first dependency constraint is
related to the dependency d21 in the dependency graph shown
in Figure 4. The dependency states that t2 → t1, hence if t2
is included in the solution (t2 = 1), then the tests t2 depends
on, i.e. t1, must be also included as well (t1 = 1).

The objective function for this problem instance is 3.0t1 +
3.0t2 + 2.5t3 + 3.5t4 + 4.0t5 + 1.0t6. The optimal solution is
given by X = {t1, t2, t3, t6}, where ti = 1, ∀ti ∈ X .

C. Implementation

We implemented our approach in a tool called
DANTE (Dependency-Aware, Crawling-Based Web Test
Generator) [10]. The tool is written in Java, and generates
Selenium WebDriver Java web test suites. We used Crawljax
4.1 [23] for generating crawling-based test suites as input to
our tool. DANTE integrates TEDD [21] to compute the test
dependencies, the Java bindings of the Z3 SAT solver [24]
(4.8.4) to compute the minimization, and NSGAII [25] for
the bi-objective optimization. The output of DANTE is a
minimized test suite and a list of validated dependencies.

IV. EMPIRICAL EVALUATION

A. Research Questions

To assess the practical effects of dependency analysis and
test suite minimization, we consider the following research
questions:

RQ1 (breakage rate). What is the breakage rate of the
segments generated by Crawljax?
RQ2 (minimization). What is the test suite minimization rate
achieved by DANTE?
RQ3 (performance). What is the runtime of DANTE? What is
the contribution of coverage-driven filtering and bi-objective
filtering in making test dependency validation efficient?
RQ4 (coverage). How does DANTE compare to Crawljax and
Atusa in terms of code coverage and breakage rate?

RQ1 aims at quantifying the breakage rate of the traces
retrieved by crawling a web application. RQ2 aims at assessing
the improvement achieved over the initial breakage rate, as
well as over the initial test suite size. RQ3 concerns evaluating
the tool’s performance, and the effectiveness of the two
proposed filters to reduce the test dependency graph. The final
research question RQ4 compares the test suites by DANTE
with those obtained by two crawling-based techniques, namely
Crawljax and Atusa (Section II-B), in terms of code coverage.

B. Subjects

Modern web applications take advantage of the functional-
ities offered by existing powerful JavaScript frameworks. We
selected open source single-page web applications (SPAs) that
were used in the context of previous research on web testing,
which were available [26]. Particularly, subjects were chosen
for their representativeness, recency, size, and popularity.

The considered web apps are quite mature (number of
commits ≥ 99), and have been maintained recently (year of
last commit ≥ 2016). The size of the systems (> 1k client-
side JavaScript LOCs, frameworks excluded) is representative
of modern web applications [27].

C. Procedure and Metrics

Procedure. First, we executed Crawljax on each subject sys-
tem. We configured the crawler to run on the Chrome browser,
with the default exploration strategy and state abstraction
function, and a runtime limit of 30 minutes. Crawljax segments
the sequence of crawled DOM states following the strategy

described in Section II, and returns a test suite. We manually
fixed the flakiness of such test suite by adding delays (empir-
ically determined) where appropriate. We executed each test
suite 10 times to check that identical outcomes are obtained
across all executions.

To answer our research questions, we evaluated two different
configurations of DANTE, by enabling in turn only one of the
proposed filtering mechanisms—coverage-driven filter, and bi-
objective filter—followed by test suite minimization. We do
not report results for the configuration in which both filters
are applied because we found experimentally that the latter
becomes useless if the former is applied.
Metrics. Concerning the breakage rate of the test segments
generated by Crawljax (RQ1), we measured the number of
generated test cases that broke when executed in isolation. To
assess the reduction rate (RQ2), we measured the number of
test cases in the minimized test suite produced by DANTE with
respect to the original test suite generated by the crawler.

We evaluated performance (RQ3) by measuring the execu-
tion time (in minutes) of each step of DANTE. To assess the
impact of the filtering heuristics (i.e., coverage-driven filter
vs bi-objective filter) on the test dependency validation time,
we executed both configurations of DANTE on each subject,
and compared the running time to complete the dependency
validation in each configuration.

Concerning coverage (RQ4), we compared DANTE against
Crawljax and Atusa [1], a state-of-the-art model-based web
test generator, in terms of client-side coverage and break-
age rate (only tests that do not break during execution are
considered for coverage). Measuring client-side coverage is
meaningful in SPAs since most of the business logic of the
application resides on the client. We configured Atusa to use
the same inputs used during crawling. Moreover, we chose the
value of k for the k-shortest path algorithm applied in Atusa
by varying its value in the range [1,1000]. We selected the
value of k which generated the highest number of tests in
such interval, constrained the test suite runtime to 60 minutes.
Such number was estimated by proportion over the test suite
runtime when k = 1. To measure coverage, we used cdp4j
3.0.8 [28], the Java implementation of Chrome DevTools [29],
which outputs the byte coverage of the executed client-side
JavaScript code reached by each test case.

D. Results

RQ1 (breakage rate). Table I (macro-column Breakage Rate)
shows the number of tests generated by Crawljax on each
subject system within the 30 minutes time budget (Column 2).
Columns 3-4 show the breakage rate of such test suites when
test cases are executed in isolation, both numerically and
percentage-wise. On average, 69 tests were generated by the
crawler, of which 85% breaks when executed in isolation.

The minimum breakage rate occurred for petclinic (24 tests
that break), whereas for the remaining subjects almost all
test cases broke (96–98% breakage rates). These empirical
results show that tests generated from the output of a crawler

TABLE I: Results for Breakage Rate (RQ1), Minimization (RQ2), Performance and Filtering Heuristics (RQ3).

BREAKAGE RATE MINIMIZATION PERFORMANCE

Coverage-driven Filter Bi-objective Coverage-driven Filter Bi-objective Filter Relative
& Minimization & Minim. & Minimization & Minimization Saving

G
en

er
at

ed
Te

st
s

(#
)

B
ro

ke
n

Te
st

s
(#

)

B
re

ak
ag

e
R

at
e

(%
)

R
em

ov
ed

by
C

ov
er

ag
e-

dr
iv

en
(#

)

% R
em

ov
ed

by
M

in
im

iz
at

io
n

(#
)

% Fi
na

l
N

um
of

Te
st

s
(#

)

% R
em

ov
ed

by
M

in
im

iz
at

io
n

(#
)

Fi
na

l
N

um
of

Te
st

s
(#

)

% C
ov

er
ag

e-
dr

iv
en

Fi
lte

r
(m

in
)

D
ep

en
de

nc
y

V
al

id
at

io
n

(m
in

)

M
in

im
iz

at
io

n
(m

in
)

To
ta

l
(m

in
)

B
i-

ob
je

ct
iv

e
Fi

lte
r

(m
in

)

D
ep

en
de

nc
y

V
al

id
at

io
n

(m
in

)

M
in

im
iz

at
io

n
(m

in
)

To
ta

l
(m

in
)

D
iff

(m
in

)

% Sp
ee

d-
up

(×
)

petclinic 65 24 37 54 83 0 0 11 83 56 9 86 50.2 25.6 0.3 76.1 23.5 1,005.6 0.3 1,005.9 953.4 93 13×
splittypie 69 66 96 59 86 1 1 9 87 56 13 81 39.1 22.6 0.2 61.9 27.7 1,842.0 0.2 1,842.2 1,808.0 97 30×
retroboard 100 98 98 95 95 1 1 4 96 96 4 96 0.5 1.7 0.6 2.8 97.2 2,026.8 0.6 2,027.4 2,096.4 99 730×
phoenix 53 51 96 38 72 0 0 15 72 34 19 64 13.2 58.2 0.2 71.6 12.2 1,242.0 0.2 1,242.2 1,182.9 94 17×
dimeshift 56 55 98 44 79 2 4 10 82 44 12 79 50.6 36.9 0.2 87.7 15.2 2,178.6 0.2 2,178.8 2,106.4 96 25×

Average 69 59 85 58 83 1 1 10 84 57 11 81 30.7 29.0 0.3 60.0 35.2 1,659.0 0.3 1,659.3 1,629.4 95 28×

cannot be executed without taking into account the hidden test
dependencies due to their shared web application states.

We manually investigated such high breakage rates and
found that they are due to application states created by the
initial tests, which the next tests rely upon. For example, in
retroboard, phoenix and dimeshift, the first tests perform a
login operation; the subsequent tests must be executed in an
application state (browser and database state) in which the
login has already been performed. In splittypie, an expense
splitting application, the second test creates an event for split-
ting expenses among participants. After the event is created,
the event page view becomes the new application home page
(a refresh redirects the browser to the event page), and all tests
executed after the second one expect such page as starting page
(unless a test case removes that event). petclinic’s tests have a
lower breakage rate since no login functionality is present.
Nevertheless, its tests still exhibit breakages due to shared
application states produced by previous tests in other parts
of the web application (for instance, a certain pet must be
created prior to schedule a visit with a veterinarian).

From our experiments, no test breakages occurred in test
suites generated by DANTE, as test dependencies are revealed
and each test is executed under the proper application state
preconditions. As such, in Table I, we do not report the
breakage rates of DANTE across the selected subjects.
RQ2 (minimization). Table I (macro-column Minimization)
shows the minimization results achieved by both configu-
rations of DANTE on our subjects. For each configuration,
the table shows the number of tests removed at each step
of the approach (coverage-based/bi-objective filter; test suite
minimization), the final test suite size, and the minimization
rate achieved with respect to the initial test suites. In the
first configuration (Coverage-driven filter & Minimization), the

main contribution to minimization is given by the coverage-
driven filter (columns 5–6), which removed 84% of the initial
test cases on average, with minimization scores greater than
70% across our subjects. The greatest minimization score oc-
curred for retroboard (96%), whereas the lowest occurred for
phoenix (72%). SAT solver-based minimization (columns 7–
8) reduced, on average, only by 1% the original test suite
size. Therefore, in this configuration, the coverage-driven filter
contributes substantially more than the minimization step to
the reduction of the size of the initial test suites. Overall, in
the first configuration, the final test suites generated by DANTE
for our subjects are 84% smaller than the initial ones generated
by Crawljax (columns 9–10).

In the second configuration (Bi-objective filter & Minimiza-
tion), the SAT solver-based minimization is responsible for the
whole initial test suite reduction, since the bi-objective filter
does not eliminate tests but dependencies. The minimization
step removed, on average, as much as 81% of the initial
tests (columns 11–13). Similarly to the first configuration, the
biggest reduction occurred for retroboard (96%), whereas the
lowest occurred for phoenix (64%).

The two evaluated configurations of DANTE achieve similar
minimization scores on our subject systems (84% vs 81%).
The difference is explained by the different instances of the
problem that the SAT solver must solve, and by the functioning
of TEDD, which does not ensure having a minimal test
dependency graph. The set of dependency constraints is dif-
ferent among configurations because the two different filtering
techniques produce two different initial test dependency graphs
(in terms of number of tests, hence in terms of dependencies).
Consequently, TEDD produces two slightly different, yet valid,
test dependency graphs. Thus, the SAT solver formulation
takes into account two different sets of dependency constraints.

RQ3 (performance). Table I (macro column Performance)
shows the running time (in minutes) of each step of DANTE
for all subject systems and for both configurations. The
coverage-driven filter, which includes greedy coverage-driven
test selection and test suite fixing (Algorithm 1), takes 30.7
min on average (columns 14–16). Most of such execution time
is devoted to test suite fixing, whereas the cost of the greedy
coverage-driven test selection is negligible (order of few
seconds per subject). The fastest execution of the coverage-
driven filter occurs for retroboard (25 seconds), while the
slowest occurs for dimeshift (51 minutes).

On average, dependency validation takes as much as
coverage-driven filtering (29 minutes), whereas the cost of the
minimization step is negligible (18 seconds). Recall that the
dependency validation runtime grows more than linearly with
the number of dependencies in the test dependency graph,
and such number is reduced due to filtering. For instance,
in phoenix, 15 (53−38) tests are retained after the coverage-
driven filter, whereas in retroboard only five (5) are left
(100−95). In the former case, dependency validation takes 58
minutes, whereas in the latter case it takes 2 minutes. Overall,
the first configuration of DANTE takes on average 60 minutes
(1 hour) to compute the final minimized test suite (column 17).

Columns 18–20 present the runtime results for each step of
the second configuration, i.e., when the bi-objective filter is
enabled. The bi-objective filter (Column 18) was configured
with a population size of 100 and was granted 1 million
fitness evaluations for each subject (such hyper-parameters
have been fine tuned by means of a few preliminary runs of
the algorithm). The runtime of the bi-objective filter depends
on the number of dependencies (hence, on the initial number
of tests). The slowest case occurs for retroboard (100 tests), in
which the filter runtime takes 97 minutes (1.6 hours), whereas
the fastest case occurs for phoenix (53 tests), with 12 min.

On average, the bi-objective filter runtime is 35 minutes
across all subjects. The dependency validation runtime (Col-
umn 19) is as high as 27 hours, taking 16 hours in the best case
(petclinic), and up to 36 hours in the worst case (dimeshift).
Also in this configuration, the cost of the minimization step
(Column 20) is negligible (18 seconds on average). Overall,
the second configuration of DANTE takes on average 27 hours
to compute the final minimized test suite, due to the high cost
of the dependency validation on large test dependency graphs.

Table I (macro column Relative Saving) compares the two
configurations of DANTE further. Specifically, Columns 21–23
show the relative saving, in minutes and percentage-wise, of
the first configuration with respect to the second configuration.
Finally, Column 23 shows also the relative speed-up.

To fully highlight the importance of filtering the test depen-
dencies prior to the minimization step, we notice that, when
none of the two filters was active, the dependency validation
never terminated within 48 hours (2 days) for all subject
systems. Thus, it is critical to enable one of the two filters,
and among them, on average, the coverage-driven filter allows
saving 26 hours with respect to the bi-objective filter, with a
speed-up of 28×.

TABLE II: Comparison between DANTE, Crawljax and Atusa
in terms of client-side byte coverage and breakage rate (RQ4).

DANTE Crawljax Atusa

N
um

.o
f

Te
st

s
(#

)

C
ov

er
ag

e
(%

)

N
um

.o
f

Te
st

s
(#

)

B
re

ak
ag

e
R

at
e

(%
)

C
ov

er
ag

e
(%

)

N
um

.o
f

Te
st

s
(#

)

B
re

ak
ag

e
R

at
e

(%
)

C
ov

er
ag

e
(%

)

petclinic 11 28.22 65 36.92 26.04 259 84.55 23.05
splittypie 9 24.32 69 95.65 15.18 54 9.26 21.41
retroboard 4 40.50 100 98.00 37.93 99 37.37 38.80
phoenix 15 53.93 53 96.22 36.21 57 42.10 47.33
dimeshift 10 42.07 56 98.21 26.53 73 91.32 29.37

Average 10 37.81 69 85.00 28.38 108 52.92 31.99

RQ4 (coverage). Table II compares the best configuration of
DANTE (Coverage-driven filter & Minimization) with Crawl-
jax and Atusa in terms of client-side byte coverage and
breakage rate. On average, the final test suites generated by
DANTE are composed of 10 tests, whereas those generated
by Crawljax and Atusa contain 69 and 128 tests, respectively
(+590% and +1180%). Concerning the breakage rates, 53%
of tests generated by Atusa broke when executed in isolation,
whereas none of the tests generated by DANTE breaks. This
means that a substantial proportion of test cases generated by
Atusa has to be discarded because they are infeasible, hence
those tests do not contribute to increase the coverage of the
application under test. Overall, tests generated by DANTE have
a coverage increase of 33% with respect to Crawljax, and 18%
with respect to Atusa.

V. DISCUSSION

Dependency and Redundancy. Our empirical results confirm
that web tests generated from crawler’s navigations often break
because they involve hidden test dependencies. Moreover,
from our experiments, most of such tests are redundant and
can be removed without compromising coverage. DANTE was
able to make all crawler-generated tests executable, reducing
the breakage rate to zero. It does so by automatically detecting
their dependencies and producing only test schedules that
respect them. In our experiments, DANTE eliminated all redun-
dant test cases in the initial test suites that do not contribute
to coverage and that can be safely removed since they do not
involve any required dependency.
Crawler-based vs Model-based Web Test Generation. In
our experiments, our approach outperforms both crawler-based
test generation, which is limited by the problems of test
dependency and test redundancy, and model-based web test
generation, which is affected by path and input infeasibility.
DANTE overcomes the limitations of both approaches by
retaining the feasible inputs and sequences provided by a
crawler, while fixing the test dependencies required to ensure
feasibility and eliminating unnecessary test cases.

Filtering Techniques. Both evaluated configurations of
DANTE have shown significant effectiveness (RQ2). Moreover,
both proposed filtering techniques allowed reducing the cost
of test dependency validation (RQ3), which is known to be
in general a computationally expensive step, and our work
makes no exception. To this aim, the coverage-driven filter
has shown better results than the filter based on bi-objective
optimization. The reason behind this is the huge size of the
initial test dependency graph (on average, 2,453 dependen-
cies). The coverage-driven filter allowed removing many false
dependencies prior to the expensive validation phase, which
explains the 28× time speed-up over the bi-objective filter.

Limitations. Our approach assumes that tests execute de-
terministically. DANTE does not include a procedure to au-
tomatically fix the flakiness of the test cases generated by
the crawler, which is a nontrivial task. For instance, simply
adding wait statements systematically within the test code
may unnecessarily and artificially increase the runtime of
the test suite, and it may not work when tests are executed
on different browsers or hardware configurations. For such
reasons, in our experiments, test flakiness was fixed manually
after the crawling step. Moreover, test cases generated by
DANTE do not include any explicit functional oracle, such as
test case assertions. Hence, only the implicit assertions (web
application crashes or runtime errors) can expose faults in the
web applications under test, unless the automatically generated
tests are augmented with manually written assertions. It would
be, however, possible to automatically generate assertions that
capture the observed (instead of the intended) behaviour for
regression testing.

Threats to Validity. Using a limited number of subject
systems in our evaluation poses an external validity threat, in
terms of generalizability of our results. We selected five single-
page web applications used in previous web testing works [26].
Such systems are developed with popular frameworks and
pertain to different domains, which should guarantee a certain
degree of generalizability, although more subject systems are
needed to fully address the generalization threat.

Threats to internal validity might come from confounding
factors of our experiments. We compared all competing algo-
rithms under identical parameter settings. Our choice of Crawl-
jax as sole baseline for crawling-based test suites might pose
another threat, as well as Atusa, which is also based on the
navigational model provided by Crawljax. However, Crawljax
is a well-known and maintained research tool, and, to our
knowledge, no better alternatives have been proposed yet. For
RQ4, we adopted a tool that computes byte coverage, instead
of the classical statement or branch coverage. However, byte
coverage is a fine-grained and precise coverage metric, which
can be turned into more coarse-grained coverage metrics, e.g.,
line coverage, if needed. With respect to reproducibility, the
source code of DANTE and all subject systems are available
in our replication package [10], making our evaluation and
results fully reproducible.

VI. RELATED WORK

Automated web testing techniques have received much
attention in recent years [1], [8], [30], [7], [31]. Due to space
reasons, we outline only the techniques that focus on end-to-
end web testing.

We have already described and evaluated Atusa [1], which
uses Crawljax to derive a state-flow graph consisting of DOM
states and transitions that model the web application under test,
and uses such model to generate test cases with predefined
invariants as test oracles.

Other approaches use manually generated page object mod-
els to guide the test generation [7], [26], [8]. Specifically,
SubWeb [7] uses a search-based approach in which model
exploration and input data generation are handled jointly.
DIG [26], on the other hand, uses input and path diversity to
generate tests. Lastly, InwertGen [8] proposes an incremental
two-steps algorithm in which page object creation and test
generation using Randoop [32] are intermixed.

Artemis [30] is a framework for automated testing of
JavaScript web applications based on feedback-directed ran-
dom testing [32]. Thummalapenta et al. [31] present a
behavioural-driven technique for generating web tests along
interesting business-related behaviours of the web app. The
behaviours of interest are specified in the form of business
rules. Marchetto et al. [33] proposed the use of a combination
of dynamic and static analysis to model the web application
as a finite state machine, and proposed a coverage criterion
based on the notion of semantically interacting events.

Differently, DANTE is the only approach that analyzes
automatically generated tests produced by a crawler, with
the aim of producing smaller test suites. Unlike mentioned
techniques, our approach is completely automated, and does
not rely on the navigational model of a web application, or a
page object model. Rather, it directly turns the raw output of
a crawler into executable test cases by reusing the same inputs
used upon crawling, resolving dependencies and eliminating
redundancies jointly.

VII. CONCLUSIONS AND FUTURE WORK

Web crawlers have long been adopted to generate test
cases for web applications, mostly following a model-based
approach. In this paper, we propose a novel approach to web
test generation, implemented in a tool called DANTE, that
transforms the output of a crawler into executable test cases.
DANTE analyses the test sequences produced by a crawler
and determines the test dependencies occurring between pairs
of test cases, while removing redundant tests by means of a
SAT-based minimization step.

Our experimental results show that test suites generated by
DANTE are 84% smaller on average than the ones produced
by the crawler, and never exhibit test breakages. In our future
work, we plan to investigate how the internal factors of the
web crawler, as the state abstraction function, segmentation
and exploration strategy, impact the redundancy and the de-
pendency between tests generated during crawling.

REFERENCES

[1] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based
web applications through dynamic analysis of user interface state
changes,” ACM Transactions on the Web, vol. 6, no. 1, pp. 3:1–3:30,
2012.

[2] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-based automatic
testing of modern web applications,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 35–53, 2012.

[3] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detecting
state-polluting tests to prevent test dependency,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis,
ser. ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 223–233.
[Online]. Available: http://doi.acm.org/10.1145/2771783.2771793

[4] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam, M. D.
Ernst, and D. Notkin, “Empirically revisiting the test independence
assumption,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014. New York,
NY, USA: ACM, 2014, pp. 385–396. [Online]. Available: http:
//doi.acm.org/10.1145/2610384.2610404

[5] W. Lam, S. Zhang, and M. D. Ernst, “When tests collide: Evaluating and
coping with the impact of test dependence,” University of Washington
Department of Computer Science and Engineering, Seattle, WA, USA,
Tech. Rep. UW-CSE-15-03-01, Mar. 2015.

[6] A. Milani Fard and A. Mesbah, “Feedback-directed exploration of web
applications to derive test models,” in Proceedings of the International
Symposium on Software Reliability Engineering, ser. ISSRE ’13.
IEEE Computer Society, 2013, pp. 278–287. [Online]. Available:
http://www.ece.ubc.ca/∼amesbah/docs/issre13.pdf

[7] M. Biagiola, F. Ricca, and P. Tonella, “Search based path and input data
generation for web application testing,” in International Symposium on
Search Based Software Engineering. Springer, 2017, pp. 18–32.

[8] B. Yu, L. Ma, and C. Zhang, “Incremental web application testing using
page object,” in Proceedings of the 2015 Third IEEE Workshop on
Hot Topics in Web Systems and Technologies (HotWeb), ser. HOTWEB
’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 1–6.
[Online]. Available: http://dx.doi.org/10.1109/HotWeb.2015.14

[9] A. Stocco, R. Yandrapally, and A. Mesbah, “Visual web test repair,”
in Proceedings of the 26th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE ’18. ACM, 2018.

[10] “Dependency-aware web test generation and minimization.” https://
github.com/matteobiagiola/ICST20-submission-material-DANTE, 2020.

[11] G. L. Breton, N. Bergeron, and S. Hallé, “A reference framework for
the automated exploration of web applications,” in Proceedings of the
19th International Conference on Engineering of Complex Computer
Systems, ser. ICECCS ’14, Aug 2014, pp. 81–90.

[12] A. Mesbah, Advances in Testing JavaScript-based Web Applications,
ser. Advances in Computers. Elsevier, 2015, vol. 97, ch. 5, pp.
201–235. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0065245814000114

[13] P. Tonella, F. Ricca, and A. Marchetto, “Recent advances in web testing,”
Advances in Computers, vol. 93, pp. 1–51, 2014.

[14] R. Yandrapally, A. Stocco, and A. Mesbah, “Near-duplicate detection
in web app model inference,” in Proceedings of 42nd International
Conference on Software Engineering, ser. ICSE ’20. ACM, 2020, p.
12 pages.

[15] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,”
in Proceedings of the 2018 IEEE Conference on Software Testing,
Validation and Verification, April 2018, pp. 1–11.

[16] J. Bell and G. Kaiser, “Unit test virtualization with VMVM,”
in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. ACM, 2014, pp. 550–561. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568248

[17] G. Rothermel, R. J. Untch, and C. Chu, “Prioritizing test cases for
regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10, pp. 929–
948, Oct. 2001. [Online]. Available: https://doi.org/10.1109/32.962562

[18] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: ACM, 2015, pp. 211–222. [Online].
Available: http://doi.acm.org/10.1145/2771783.2771784

[19] A. Vahabzadeh, A. Stocco, and A. Mesbah, “Fine-grained test
minimization,” in Proceedings of the 40th International Conference
on Software Engineering, ser. ICSE ’18. ACM, 2018, pp. 210–221.
[Online]. Available: http://doi.acm.org/10.1145/3180155.3180203

[20] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency
detection for safe java test acceleration,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 770–781.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786823

[21] M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella, “Web test
dependency detection,” in Proceedings of 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE ’19. ACM, 2019, pp. 154–164.

[22] F. Arito, F. Chicano, and E. Alba, “On the application of sat solvers
to the test suite minimization problem,” in International Symposium on
Search Based Software Engineering. Springer, 2012, pp. 45–59.

[23] “Crawljax: Crawling JavaScript-based Ajax web applications.” https://
github.com/crawljax/crawljax, 2019.

[24] “The z3 theorem prover.” https://github.com/Z3Prover/z3, 2019.
[25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-
lutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[26] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based web
test generation,” in Proceedings of 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. ACM, 2019, pp. 142–153.

[27] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Detecting un-
known inconsistencies in web applications,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE Press, 2017, pp. 566–577.

[28] “Chrome DevTools protocol for java.” https://github.com/webfolderio/
cdp4j, 2019.

[29] “CSS and JS code coverage.” https://developers.google.com/web/
updates/2017/04/devtools-release-notes#coverage, 2019.

[30] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip, “A framework
for automated testing of javascript web applications,” in Proceedings
of the 33rd International Conference on Software Engineering, ser.
ICSE ’11. New York, NY, USA: ACM, 2011, pp. 571–580. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985871

[31] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra,
“Guided test generation for web applications,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 162–171. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486810

[32] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 75–84. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.37

[33] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of Ajax
web applications,” in Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, ser. ICST ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 121–130.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2008.22

http://doi.acm.org/10.1145/2771783.2771793
http://doi.acm.org/10.1145/2610384.2610404
http://doi.acm.org/10.1145/2610384.2610404
http://www.ece.ubc.ca/~amesbah/docs/issre13.pdf
http://dx.doi.org/10.1109/HotWeb.2015.14
https://github.com/matteobiagiola/ICST20-submission-material-DANTE
https://github.com/matteobiagiola/ICST20-submission-material-DANTE
http://www.sciencedirect.com/science/article/pii/S0065245814000114
http://www.sciencedirect.com/science/article/pii/S0065245814000114
http://doi.acm.org/10.1145/2568225.2568248
https://doi.org/10.1109/32.962562
http://doi.acm.org/10.1145/2771783.2771784
http://doi.acm.org/10.1145/3180155.3180203
http://doi.acm.org/10.1145/2786805.2786823
https://github.com/crawljax/crawljax
https://github.com/crawljax/crawljax
https://github.com/Z3Prover/z3
https://github.com/webfolderio/cdp4j
https://github.com/webfolderio/cdp4j
https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage
https://developers.google.com/web/updates/2017/04/devtools-release-notes#coverage
http://doi.acm.org/10.1145/1985793.1985871
http://dl.acm.org/citation.cfm?id=2486788.2486810
http://dx.doi.org/10.1109/ICSE.2007.37
http://dx.doi.org/10.1109/ICST.2008.22

