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Abstract—Test Input Generators (TIGs) are crucial to assess
the ability of Deep Learning (DL) image classifiers to provide
correct predictions for inputs beyond their training and test sets.
Recent advancements in Generative AI (GenAI) models have
made them a powerful tool for creating and manipulating syn-
thetic images, although these advancements also imply increased
complexity and resource demands for training.

In this work, we benchmark and combine different GenAI
models with TIGs, assessing their effectiveness, efficiency, and
quality of the generated test images, in terms of domain validity
and label preservation. We conduct an empirical study involving
three different GenAI architectures (VAEs, GANs, Diffusion
Models), five classification tasks of increasing complexity, and 364
human evaluations. Our results show that simpler architectures,
such as VAEs, are sufficient for less complex datasets like
MNIST. However, when dealing with feature-rich datasets, such
as ImageNet, more sophisticated architectures like Diffusion
Models achieve superior performance by generating a higher
number of valid, misclassification-inducing inputs.

Index Terms—Software Testing, Generative AI, Deep Learning

I. INTRODUCTION

Deep Learning (DL) has reshaped several fields, including
image processing, where DL image classifiers often outper-
form traditional vision methods and even human experts in
accuracy and efficiency [1]. This advancement has enabled
greater automation, especially in life- and safety-critical areas
such as healthcare and autonomous driving [2]–[5].

Ensuring the quality of DL image classifiers remains crucial,
as it is difficult to assess their ability to generalize to unseen
data. In fact, their training and test sets may not fully capture
the range of real-world scenarios they will encounter after
deployment [6], [7]. A significant challenge for software
testers is generating test images that accurately reflect real-
world operating conditions and trigger misclassifications, i.e.,
unexpected behaviors where predicted labels deviate from the
expected ones. Thus, researchers have proposed test input
generators (TIGs), aimed at automatically generating synthetic
images to assess the quality of DL classifiers [8]–[11].

Most TIGs apply small perturbations to inputs to maintain
their expected label, addressing the oracle problem [12]–[14],
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Fig. 1. Misclassification-inducing test images for handwritten digit classifiers:
(a) valid and label-preserving, (b) valid but not label-preserving, (c) invalid.

as the correct output is unknown for synthetic data. However,
such perturbations can lead to invalid inputs (i.e., outside the
classification task’s domain) or fail to preserve the label of the
original image (i.e., no longer belong to the same class) [11],
[15]. Existing TIGs often overlook input validity and assume
that ground-truth labels remain preserved [11]. Figure 1 shows
three misclassified inputs for an handwritten digit classifier:
input (a) is valid and the expected label (i.e., 9) matches with
the human assessment; (b) is valid but fails to preserve the
expected label; and (c) is invalid, because it does not belong
to the domain of handwritten digits.

The first propositions of TIGs primarily focused on ma-
nipulating raw inputs (i.e., pixel perturbations [16]–[19]) or
parametrized semantic representations (e.g., control points in
vector graphics [7], [20], [21] or parameters in simulators [22],
[23]). However, these approaches are restricted to modifying
initial images with known ground-truth labels, limiting explo-
ration to regions near the original inputs and leaving significant
portions of the input space untested.

Researchers have recently started leveraging the creativity of
distribution-aware Generative AI (GenAI) models [15], [24]–
[27], which learn the input data distribution in the form of a
latent space, i.e., a compressed low-dimensional representation
capturing the key features of the problem domain [28]. GenAI-
based TIGs manipulate inputs in the latent space, where small
changes can yield significant image variations (e.g., style,
pose, color), before converting latent representations back into
pixel space. In this way, GenAI models can generate unique
images, blending features from learned patterns in ways not
present in the original training data.

Existing studies have demonstrated the effectiveness of
GenAI-based TIGs [11], [24], [25], [29]. However, they are



Fig. 2. Summary of the GenAI models considered in this paper and the process by which TIGs perturb their latent vectors.

often influenced by confounding factors such as differences in
testing algorithms and the absence of standardized training,
experimental setups, and hyperparameter tuning. Moreover,
they have not yet incorporated recent innovations like diffusion
models, making it difficult to fairly compare the test generation
capabilities across different GenAI models.

In our study, we fill this gap by providing the most compre-
hensive cross-evaluation of GenAI TIGs, benchmarking three
key GenAI models, i.e., VAEs, GANs, and diffusion models,
across popular datasets of increasing complexity. We provide a
standardized experimental framework, including search-based
optimization for latent space manipulation, and systematically
evaluate these models in terms of their ability to generate
valid, label-preserving, and misclassification-inducing inputs,
considering efficiency and effectiveness. Our results show
that GenAI TIGs can produce valid, label-preserving inputs,
although the degree of success varies. Simpler models, such as
VAEs and GANs, perform well on less complex datasets like
MNIST and SVHN. Diffusion models excel in complex tasks
like CIFAR-10 and ImageNet, generating up to 80% more
valid label-preserving inputs. Our key contributions are:

• A large-scale empirical study comparing three GenAI
architectures (VAEs, GANs, and diffusion models) across
five classification tasks, along with a validity assessment
involving 364 human assessors.

• A search-based test generation framework that integrates
different GenAI models, enabling automated testing of
DL classifiers through latent space manipulation.

To encourage open research, our test generation framework
and experimental data are available [30].

II. BACKGROUND

In the following, we describe the three main GenAI archi-
tectures considered in this paper (Figure 2).

A. Variational Autoencoders (VAEs)

VAEs, introduced by Kingma et al. [31], consist of two
neural networks: an encoder and a decoder (Figure 2 (a)). The
encoder learns to map images to lower-dimensional representa-
tions (i.e., latent space vectors sampled from a predefined dis-
tribution). The decoder learns to reconstruct images from the
latent vectors. This architecture extends standard autoencoders

by adopting a probabilistic approach to model complex data
distributions. The two networks are trained jointly to minimize
a loss function that balances two objectives: the reconstruction
error (i.e., difference between original inputs and VAE’s recon-
structions), and the Kullback-Leibler divergence [32], which
regularizes the learned latent space distribution to align with
a prior distribution, e.g., a standard normal distribution. The
sampling step during training introduces randomness, enabling
VAEs to learn smooth and continuous latent spaces.

In software testing, Kang et al. [24], [29] and Dola et
al. [15], [27] used VAEs for generating edge cases to assess
the robustness of image classifiers. In particular, their TIGs
encode existing images to increase control over generation and
perturb the latent vectors returned by the encoder.

B. Generative Adversarial Networks (GANs)

GANs introduced by GoodFellow et al. [28], consist of two
neural networks, i.e., a generator and a discriminator, trained
simultaneously (Figure 2 (b)). These networks are involved
in competitive learning to improve one another performance:
the discriminator learns to distinguish real from artificially
generated images, while the generator learns to create images
from latent vectors sampled from a known distribution that
can fool the discriminator. While VAEs explicitly model the
data distribution and enforce smoothness in the latent space
trough their probabilistic approach, GANs’ generators implic-
itly learn to approximate the data distribution by continuously
improving their ability to deceive discriminators. This often
results in more realistic images than those generated by VAEs,
although GANs are more challenging to train due to issues like
instability and mode collapse, where the generator learns only
a limited subset of features, leading to reduced diversity in the
generated images [28]. GANs are useful for testing, as they can
generate realistic artificial images that resemble the training
distribution and are difficult to distinguish from real data.
Moreover, GANs allow test manipulation by perturbing latent
space vectors (i.e., input to the GAN generator). In software
testing, Dunn et al. [25] adopt conditional Deep Convolutional
GANs (cDCGANs), which leverage convolutional layers for
improved image generation quality, and incorporate additional
information (called conditions) such as class labels to better
guide the generation of images that meet predefined criteria.
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C. Diffusion Models (DMs)
DMs were first introduced by Sohl-Dickstein et al. [33].

The core idea behind these models is to simulate a diffusion
process, where information in an image is gradually diffused
(i.e., noise is incrementally added) and then progressively
recovered through a reverse process, known as denoising
(Figure 2 (c)). During training, diffusion models add noise
to the data over a sequence of steps, gradually transforming
an original vector into a noisy version that resembles a simple
Gaussian distribution. The model is then trained to reverse
this process and recover the original data, learning how to
transform noise back into a complex data distribution, i.e.,
natural images [34]. This approach enables the generation of
highly realistic images, offering significant advantages over
other generative models, such as GANs, particularly in terms
of training stability and resistance to mode collapse [33].

In text-to-image scenarios, we considered models like Stable
Diffusion, which leverages a textual description of the desired
input (called prompt) to generate corresponding images. Its
architecture consists of three main components: the text en-
coder, the image information creator, and the image decoder.
A noisy latent vector is obtained by combining a noise vector
with the latent vector obtained by encoding the prompt. The
information image creator iteratively refines this noisy latent
vector, guided by the prompt. The final latent vector is then
transformed into a high-resolution image by the decoder. This
work is the first to integrate Stable Diffusion into a TIG for
image classifiers, by manipulating its input latent vector.

III. EVALUATION FRAMEWORK

In this section, we describe the evaluation framework we
propose for comparing different GenAI architectures for the
generation of misclassification-inducing inputs for DL based
image classifiers. Our framework is designed to (1) smoothly
integrate different GenAI models, (2) enable the genera-
tion and controlled manipulation of novel inputs through
the corresponding latent vectors, (3) guide input manipula-
tion towards inducing misclassifications, and (4) return the
misclassification-inducing inputs along with statistics on the
efficiency of their generation. To explore the latent space
produced by the GenAI methods, we adopt search-based
optimization using a population-based genetic algorithm, due
to its success in testing DL based systems [20], [22], [24],
[35]–[37]. Specifically, we define a fitness function that assigns
lower values to inputs more likely to induce misclassifications,
which the search process seeks to minimize.

Algorithm 1 outlines the steps of our framework. It takes
as input the classifier under test C, the latent vector used by
the GenAI model to produce an image (i.e., the seed), the
corresponding expected label (i.e., the class the image should
belong to), and the configuration parameters for the test gen-
eration process. As output, it returns the first misclassification-
inducing input it identifies, along with the number of iterations
required to generate it.

The algorithm starts by initializing the perturbation step,
which is used to modify the latent vectors of the GenAI

Algorithm 1: Test Generation with GenAI Models
Data: s: seed latent vector, expLabel expected label, G: GenDL

model, C: classifier under test, popSize: population size,
tshdBest: threshold for selection operator, N number of
iterations, ωinit: initial perturbation step, minBound,
maxBound: minimum and maximum values observed during
the training of G.

Result: ˆimg: misclassification-inducing image, iter: # of iterations
needed to generate a test input

1 perturbation step ω → ωinit
2 image img → G(s)
3 label l, fitness fprev → EVALUATE(img, C, expLabel)
4 if (l ↑= expLabel) then
5 return ↓, 0 /* Return if the original input is misclassified */

6 for i = 1 ↔ popSize do
7 population individual Pi → MUTATION(s, ω)

8 iter → 0
9 while iter < N do

10 image population IP → G(P )
11 fitness values F → EVALUATE(IP , C, expLabel)
12 best individuals P

→ → SELECT(P, F, tshdBest)
13 best fitness fmin → min(F )
14 if (fmin < 0) then
15 ˆimg → GETBESTINDIVIDUAL(P →)
16 return ˆimg, iter

17
18 else if (fmin == fprev) then
19 ω → 2 · ω

/* Adaptively increase the mutation extent */

20 else
21 ω → ωinit

/* reset to initial mutation extent when fitness improves */
22 fprev → fmin

23 offspring O → []
24 for j → 1 to (popSize ↗ length(P →)) do
25 parents pj1, pj2 → RANDOMCHOICE(P →

, 2)
26 offspring o → CROSSOVER(pj1, pj2)
27 o → MUTATION(o, ω)
28 o → CLAMP(o,minBound,maxBound)
29 O → O ↘ {o}
30 P → P

→ ↘O

31 iter → iter + 1

32 return ↓, iter

model G (Line 1). The first image is generated from the seed
latent vector, which provides the necessary information for G
to produce an image belonging to the target class (Line 2).
This first image is evaluated on the classifier under test,
determining the predicted label and its fitness score (Line 3).
The test generation process terminates if the initial image is
misclassified, i.e., it does not belong to the expected class
according to the classifier (Lines 4-5). In fact, the goal of a TIG
is to find slight perturbations that transform an image predicted
as expected into another one predicted differently, as these can
highlight weaknesses of the classifier [20]. A population of
size popSize is created through the mutation genetic operator,
which applies random perturbations to the initial latent vector,
thus increasing diversity within the population.

The main loop is executed up to N times (Lines 9–31),
i.e., it stops if a misclassification is found or if the iteration
budget is exhausted. At each iteration, G produces images
corresponding to the latent vectors in the population P , which
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are evaluated by the classifier (Lines 10-11). The selection
operator chooses the most promising inputs, i.e., those with
lower fitness (Line 12). If an individual exhibits negative fit-
ness (indicating a misclassification), the corresponding image
is returned as output and the algorithm terminates (Lines 14–
16). Otherwise, the selected individuals are modified using the
genetic operators.

The mutation operator is adaptive, i.e., the perturbation step
increases if no improvement in fitness is observed during the
previous iteration (Lines 18–21). Offsprings are obtained by
applying the mutation and crossover operators (Lines 23–29).
To prevent the generation of unrealistic images, latent vectors
are clamped within the bounds minBound and maxBound
observed during the GenAI model training, as suggested by
Dunn et al. [25]. The offsprings and the best individuals from
the current iteration form the population for the next iteration
(Line 30). In the following, we describe in detail each main
component of the search algorithm.

A. Input Representation and Initialization
To represent the input domain, our framework leverages

a lower-dimensional latent space synthetized by the GenAI
models. The latent space captures underlying patterns of the
input data in a more abstract and compressed form compared
to the original high-dimensional input space. It consists of a
multivariate probability distribution characterized by param-
eters such as the means and variances of a predefined z-
dimensional distribution chosen during training.

Our approach represents test inputs as latent vectors, which
are points sampled within the latent space, whose dimension-
ality is defined by the specific GenAI model adopted by the
TIG. Exploring the latent space is more efficient than searching
directly in high-dimensional pixel space due to its reduced
dimensionality and mapping to a known distribution. Our TIG
leverages an initial seed latent vector corresponding to an
input image whose label is known and correctly predicted by
the classifier under test. From this seed, our TIG produces
a population of slight variations, enabling exploration of its
neighborood and introducing diversity into the search process.
The starting seed depends on each specific GenAI model.

VAEs use the latent vector produced by the encoder when
processing an image from the original test set of the considered
dataset, whose ground-truth label is known. This approach,
used in the literature by Kang et al. [24] and Dola et al. [27],
ensures higher similarity to the original input and, thus, label
preservation and better control over the exploration.

As for GANs, the initial seed is a vector sampled from
the target distribution used during training. Specifically, we
use conditional GANs, which accept as input both the latent
vector and the target label. This conditioning, also employed
by Dunn et al. [25], improves control over image generation.

Also for DMs, the seed is a vector sampled from the training
distribution. This GenAI model controls the generation by
accepting as input also a textual prompt, which describes
both the input domain and the target class. Although no
current TIG employs this approach, latent space exploration

for DMs is a well-established practice in the field [38]. Stable
Diffusion guidance scale parameter significantly influences the
image generation process. This parameter determines to what
extent the generated image adheres to the prompt. Higher
values make the model focus more on the prompt, resulting
in images closely aligned with the input text, but may reduce
diversity and occasionally lead to lower image quality. Lower
values introduce more diversity and creativity, with a looser
connection to the prompt. During seed generation, we adopt
a relatively higher value (3.5) for the DMs guidance scale
parameter compared to latent vector mutation (1.4). This
choice, motivated by preliminary experiments, promotes label
adherence during mutation and diversity in seed generation,
as recommended by the authors’ guidelines [39], [40].

B. Fitness Function

The EVALUATE function calculates the fitness of each
individual in the population, based on how the classifier under
test predicts the image generated from the corresponding latent
vector. In this context, an individual is considered fit if it
is likely to cause a misclassification, i.e., the corresponding
image should belong to one class but is classified as a different
class. To this aim, we leverage the activation levels from the
output softmax layer of the image classifier. It provides a
surrogate confidence score for each possible class [41] as the
softmax output can be interpreted as a probability distribution
over the classes, with the highest value indicating the predicted
class for a given input. Similar fitness functions have been
employed by several existing approaches [16], [17], [20], [25].

Specifically, the fitness value is computed as the difference
between the confidence score of the expected class and the
highest confidence score for any other class. The formula of
the fitness for the input image x is defined as follows:

fitness(x) = ωexpected(x)→ max
i →=expected

ωi(x) (1)

where ωexpected(x) represents the softmax output for the ex-
pected class, and maxi →=expected ωi(x) is the highest softmax
output for any other class. The fitness function approaches
zero when the confidence scores of the expected class and the
second-highest class are similar. A negative value indicates a
misclassification, as the highest confidence score is assigned
to a class different from the expected one. Thus, this fitness
function is designed to be minimized by the test generator to
promote inputs that are closer to induce misclassifications.

C. Genetic Operators

Our SELECT operator chooses the most promising indi-
viduals for the next generation, i.e., those with the lowest
fitness scores. The number of individuals chosen is controlled
by the parameter tshdBest, which can be tuned to balance
exploration and exploitation. A lower tshdBest value intensifies
exploitation by focusing on fewer, high-performing individ-
uals, potentially speeding up failure detection but with the
risk of premature convergence to local optima; a higher value,
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instead, retains more individuals, promoting greater diversity
in the population and allowing for a broader exploration.

Representing inputs as latent vectors enables uniform MU-
TATION and CROSSOVER operators across all GenAI models.
We adopt a single-point CROSSOVER operator that combines
two individuals randomly chosen among the ones selected
by the selection operator. This operator divides the latent
vectors of the parents at a random point, taking the first
portion from one parent and the second portion from the
other, generating an offspring that inherits characteristics from
both. This promotes exploration of new latent space regions by
combining information from the most successful individuals.

The MUTATION operator introduces random perturbations
to the offspring, encouraging diversity and preventing stag-
nation in local optima. These perturbations are obtained by
multiplying random noise sampled from a normal distribution
by the perturbation step, as described in the following formula:

zmut = zorig + ω · ε, ω ↑ N (0, 1)d (2)

where zorig is the initial latent vector of dimensionality d,
ϑ is the noise vector of the same dimensionality where each
component is sampled from a standard normal distribution, ε
is the perturbation step, and zmut is the perturbed latent vector.

The perturbation step ε is adjusted adaptively based on the
fitness of the previous iteration, i.e., if the previous iteration
did not improve the best fitness score, then the mutation extent
is increased to escape local optima by allowing larger changes
to the latent vectors. Conversely, if improvement is observed,
the mutation rate is decreased to its default value εinit, in
order to exploit promising areas of the solution space.

IV. EMPIRICAL SETUP

Our study compares different GenAI models for test input
generation. We integrate each of them into our framework
(Section III) to create GenAI TIGs. We assessed their effective-
ness and efficiency in generating valid, label-preserving inputs
that cause misclassifications in the classifier under test.

A. Research Questions
RQ1 (Seed Generation): Which GenAI model generates

more correctly classified seed inputs within the same budget?
Effective test generation begins with the identification of re-

liable seeds, i.e., inputs that produce images that are predicted
as expected by the classifier under test [20]. In fact, only these
seeds can be used by TIGs to identify input variations that
trigger misclassifications.

Metric: For each GenAI model, we compute the ratio of
seeds assigned the correct label by the classifier, compared to
the total number of generated seeds.

RQ2 (Effectiveness): Which GenAI TIG generates more
misclassification-inducing inputs?

A standard approach to evaluate and compare the effective-
ness of TIGs is to count the number of failures triggered within
a given budget [8]. A TIG that triggers more misclassifications
could potentially expose more weaknesses or bugs in the
classifier under test.

TABLE I
DATASETS’ INPUT SIZE AND CLASSIFIERS’ TRAINING ACCURACY.

Dataset Image Size Classifier Accuracy (%)

MNIST 28x28x1 deepconv [24] 99.46
SVHN 32x32x3 VGGNET [24] 95.20
CIFAR-10 32x32x3 VGGNET [24] 86.38
ImageNet 224x224x3 VGG19bn [43] 75.00

Metric: For each TIG, we calculate the number of
misclassification-inducing inputs and their ratio over the total
number of generated inputs.

RQ3 (Efficiency): How efficient are GenAI TIGs in trigger-
ing misclassifications?

The goal of this research question is to assess the efficiency
of each GenAI TIG in triggering misclassifications during
the iterative process of our testing framework. Efficiency,
in this context, refers to the model’s ability to generate
misclassification-inducing inputs with fewer iterations, provid-
ing insight into how quickly each TIG can expose weaknesses
in the classifier under test.

Metric: We measure the average number of iterations re-
quired to trigger a misclassification across all seeds. For seeds
where the TIG does not trigger any misclassification, we report
the maximum number of iterations, i.e., the search budget.

RQ4 (Validity): Which GenAI TIG generates more valid,
misclassification-inducing inputs, according to humans?

TIGs offer a reliable assessment of classifiers’ quality only
when misclassification-inducing inputs are valid, i.e., recog-
nisable by humans as part of the input domain [11], [42].
Invalid inputs may not be worth further analysis by testers, as
they refer to images that cannot be observed in the real world
and, thus, do not provide meaningful insights into the defects
of the DL model under test. In this work, we evaluated each
generated input with multiple independent human assessors.

Metric: We calculate the number and ratio of valid inputs
(as assessed by human evaluators) over the total number of
misclassification-inducing inputs.

RQ5 (Label Preservation) To what extent the valid
misclassification-inducing inputs generated by GenAI TIGs
preserve the seed’s label?

A misclassification is detected when the predicted label
differs from the expected one, i.e., the seed’s label. For this
reason, it is crucial to evaluate whether the images generated
by TIGs preserve the expected label.

Metric: For each TIG, we measure the number and ratio of
valid, misclassification-inducing, and label-preserving inputs
over the total number of generated, valid and misclassification-
inducing inputs.

B. Datasets and Image Classifiers

We consider four widely-used image datasets of increasing
complexity: MNIST [44], SVHN [45], CIFAR-10 [46], and
ImageNet [47]. These datasets cover classification tasks rang-
ing from recognizing 10 classes in small greyscale images

5



to identifying one of 1,000 classes from large-scale, colored
images representing real-world objects. In the following, we
describe the considered datasets and classifiers (Table I).
MNIST. A dataset of 70,000 grayscale images of handwritten
digits, each with a resolution of 28x28 pixels and pixel values
ranging from 0 to 255. The labels correspond to digits from 0
to 9. Due to its simplicity, MNIST is widely used in DL frame-
works’ tutorials [48] and research papers [9]. The classifier
under test is the convolutional DNN used in the TIG proposed
by Kang et al. [24], which includes four convolutional layers,
two pooling layers, and two fully connected layers.
SVHN. This dataset contains 600,000 images of house num-
bers, representing digits from 0 to 9. Unlike MNIST, this
dataset poses a more difficult challenge, with larger, colored
images (32x32), where the target digit may be surrounded by
neighboring digits, adding complexity to the recognition task.
The classifier under test is the VGG architecture used by Kang
et al. [24], which employs five convolutional blocks.
CIFAR-10. This dataset consists of 60,000 color images,
each 32x32 pixels, spanning 10 different classes representing
animals and vehicles. This dataset is more complex than
SVHN because it involves a wider variety of classes with
greater diversity and complexity in terms of backgrounds,
textures, lighting, and object orientations. For this dataset, we
used the same DL architecture used for SVHN [24].
ImageNet-1k. dataset consists of over 14 million images
spanning 1,000 classes. It is widely recognized for its role
in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) since 2010, with the 2012 version being a bench-
mark standard for image classification tasks. Compared to
the other three datasets, ImageNet-1k includes high-resolution
images and a significantly broader range of categories. We
tested the VGG19bn pretrained DL model, available through
the PyTorch library [43], consisting of 16 convolutional layers
and three fully connected layers.

C. GenAI Models Setup

We compared the GenAI models introduced in Section II.
To ensure fairness, each model was trained on the same
training set originally used to train the DL classifier under
test. The latent space of these GenAI models was leveraged in
combination with the TIG described in Section III to generate
test images. Table II provides an overview of each GenAI
model, including a link to its architecture and details about
its training and inference process, offering insights into their
respective computational costs and complexities. The models
were trained until convergence, on a machine featuring an
NVIDIA GeForce RTX 3090 GPU (24 GB VRAM) and
CUDA 12.4 for GPU acceleration.
VAE. We trained unconditional VAEs for all the considered
datasets. In particular, we trained increasingly more complex
architectures, aligning with the difficulty of the classification
task. They span from a basic architecture with a single fully
connected hidden layer in both the encoder and decoder for
MNIST [49], to more sophisticated architectures, incorpo-

TABLE II
CHARACTERISTICS OF THE GENAI MODELS: LATENT VECTOR SIZE,
TRAINING TIME UNTIL CONVERGENCE, AVERAGE INFERENCE TIME.

Dataset Model LV size ttrain (min) tinfer (ms)

MNIST
VAE [49] 400 6 0.27
GAN [50], [51] 100 9 0.7
DM [52] 16384 405 960.68

SVHN
VAE [53] 800 93 4.07
GAN [50], [51] 100 86 1.75
DM [52] 16384 572 1213.49

CIFAR-10
VAE [53] 1024 423 2.51
GAN [50], [51] 100 450 1.73
DM [52] 16384 362 1903.29

ImageNet
VAE [54] 512 2521 11.92
GAN [55] 128 21600 20.68
DM [52] 16384 30 1945.77

rating multiple fully connected and convolutional layers to
effectively capture the features of ImageNet data [54].
GAN. For MNIST, SVHN and CIFAR-10, we adopted a
flexible conditional deep convolutional GAN from the lit-
erature [56] and trained it on each dataset separately. As
dataset complexity increases, it becomes more challenging
for the generator to produce realistic images. For this reason,
we adopted for ImageNet the more sophisticated conditional
BigGAN architecture [55] used by Dunn et al. [25].
DM. Due to the high complexity and computational demands
of the Stable Diffusion model, it was not feasible to train
it from scratch on each dataset. For this reason, we fine-
tuned the pretrained, robust Stable Diffusion model v1.5 [57]
provided by HuggingFace for five epochs on each dataset.
We employed the Low-Rank Adaptation (LoRA) technique
[58], which reduces memory consumption and accelerates fine-
tuning of large models. For each dataset, we defined specific
textual prompts to guide the model in learning the concept
of each class. Stable Diffusion was fine-tuned on the entire
MNIST, SVHN, and CIFAR-10 datasets. Due to the large size
and number of classes of ImageNet, we focused on fine-tuning
two specific classes separately, i.e., teddy bear and pizza.

D. Experimental Procedure

We conducted a comprehensive comparison of the consid-
ered GenAI models, i.e., VAEs, GANs, and DMs, within our
TIG framework. Each model was trained on five tasks across
four datasets, resulting in a total of 15 distinct test generators.

For each GenAI model, we generated 100 starting seeds,
according to the specific initialization for each model, as
described in Section III-A. Each TIG was allocated a budget
of 250 iterations with consistent genetic algorithm parameters,
i.e., a population size popSize of 25 and a selection threshold
tshdBest of 10, maintaining the same ratio as related work [24].
Figure 3 shows examples of misclassification-inducing images
generated by our GenAI TIGs. We experimented with two
initial perturbation steps εinit that we chose as partitions of
latent vector ranges of each GenAI model. After generating
1,000 seeds per model, we computed the range based on the
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maximum and minimum values of the latent vectors. In this
way, we accounted for each GenAI model’s unique latent
space structure. The lower perturbation step (εinit = Low)
was obtained by dividing the range by 104, while the higher
(εinit = High) by 103. This allowed us to compare the
impact of fine-grained vs more substantial perturbations on
test generation effectiveness and efficiency.

The validity and label preservation of misclassification-
inducing inputs were assessed by independent human evalua-
tors. Automated distribution-based validators [15], [59] were
not considered, as they are limited to checking whether inputs
are in the same distribution of their training data and overlook
the problem of label preservation, as shown by Riccio and
Tonella [11]. Instead, humans can provide more accurate
judgments on whether the generated images semantically
belong to the intended input domain. We used the Amazon
Mechanical Turk [60] crowdsourcing platform, which grants
access to a diverse and independent group of assessors [61].
This platform is well-suited for qualitative feedback collection,
as widely demonstrated in previous studies [11], [20], [62],
[63]. Assessors were compensated appropriately [64].

For each image, we asked the assessors to identify which
class was represented within the problem domain or if the
image did not belong to that domain (i.e., it was invalid).
For MNIST, SVHN, and CIFAR-10, the assessors selected
from the 10 possible classes or the invalid option (“Not
a handwritten digit/house number/real-world object”). Since
ImageNet-1K has 1,000 classes, the user could choose between
the expected class, the eight most commonly predicted classes
by our classifier under test for the corresponding tasks, or the
“Another real-world object” and “No real-world objects” op-
tions. We implemented two quality control measures to assess
the reliability of the responses provided by human assessors.
First, we added an Attention Check Question (ACQ) to each
survey. Second, we restricted the participation to workers with
high reputation, i.e., above 95% approval rate [65]. The ACQ
consisted of an image for which the human choice is obvious,
and only users passing this check were included in the results.

Surveys consisted of multiple questions for each classifica-
tion problem, ensuring that each image was shown only once
across the surveys. Each survey was answered by 2 assessors,
so that each input was assessed by 2 human evaluators, with a
total of 182 surveys and 364 human participants. We counted
the number of images where both assessors agreed on the
validity (i.e., assigned a class within the problem domain) or
invalidity. Disagreements were excluded from the analysis. We
then compared metrics for each pair of GenAI TIGs within the
same classification task and perturbation step.

To determine statistical significance, we performed Fisher’s
exact test [66] for binary variables. Since the average number
of iterations is a continuous variable, we adopted the Mann-
Withney U-Test [67] when assessing efficiency, measuring the
magnitude of the differences with the Cohen’s D [68]. We
threshold the p-value to be lower than 0.05, combined with a
non-negligible effect size or odds ratio, to assess a statistically
significant difference between the compared GenAI TIGs.

Fig. 3. Misclassification-inducing images generated by GenAI TIGs

V. RESULTS

A. RQ1 (Seed Generation)

The fourth column of Table III reports the number of seeds
generated by each GenAI model that were correctly predicted
by the classifiers under test. The values are consistent across
both low and high perturbation steps (“Low” and “High”), as
we used the same initial seeds for each GenAI TIG.

For MNIST, both VAE and GAN produced a significantly
higher percentage of correctly classified seeds compared to
DM. This may be due to the fact that the original DM was
trained on colored images, and during fine-tuning, it had to
adapt to greyscale inputs.

For SVHN and CIFAR-10, however, DMs significantly out-
performed VAEs and GANs, demonstrating better adaptability
to the complexity of these datasets.

In the ImageNet tasks, GANs performed best for the pizza
class and similarly to DMs for the teddy bear class. This
improvement in GAN performance is probably due to the
usage of the larger BigGAN architecture [55], which is better
suited for high-complexity datasets.

RQ1 (Seed Generation): VAEs’ performance declined
progressively as dataset complexity increased, result-
ing in only 14 correctly predicted seeds for ImageNet.
In contrast, both GANs and DMs maintained consis-
tently high accuracy in seed generation, with more than
66% of seeds correctly predicted for all datasets.

B. RQ2 (Effectiveness)

The fifth column of Table III presents the percentages and
quantities of misclassification-inducing inputs, generated by
GenAI TIGs, starting from the correctly predicted seeds (RQ1).

For low perturbation steps, DMs significantly outperformed
or were comparable to other models (e.g., for the pizza class),
triggering up to 5↓ more failures for MNIST. Across all mod-
els, performance improved as dataset complexity increased.
This is likely due to the growing difficulty of the tasks and
the corresponding decline in classifier accuracy (Table I).
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TABLE III
COMPARISON BETWEEN GENAI TIGS ACROSS DIFFERENT DATASETS AND MUTATION EXTENTS IN TERMS OF VIABLE SEEDS,

MISCLASSIFICATION-INDUCING INPUTS, NUMBER OF ITERATIONS TO GENERATE FAILURE, INPUT VALIDITY, AND LABEL PRESERVATION. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD, WHILE THE UNDERLINED VALUES ARE NOT STATISTICALLY DIFFERENT FROM THE BEST.

Dataset Pert. Step (ωinit) Model % Seeds % Misclass. (#) # Iterations % Validity (#) % Preserved (#)

MNIST

Low
VAE 99 4.04 (4) 245.41 50.00 (2) 100.00 (2)
GAN 99 8.08 (8) 242.05 75.00 (6) 83.33 (5)
DM 87 50.57 (44) 164.61 45.45 (20) 30.00 (6)

High
VAE 99 100.00 (99) 62.92 73.74 (73) 49.32 (36)
GAN 99 96.97 (96) 107.46 69.79 (67) 62.69 (42)
DM 87 100.00 (87) 26.77 40.23 (35) 34.29 (12)

SVHN

Low
VAE 66 50.00 (33) 178.20 51.52 (17) 41.18 (7)
GAN 84 42.86 (36) 182.22 30.56 (11) 45.45 (5)
DM 95 69.47 (66) 131.04 39.39 (26) 57.69 (15)

High
VAE 66 100.00 (66) 27.00 39.39 (26) 30.77 (8)
GAN 84 98.81 (83) 39.00 36.14 (30) 50.00 (15)
DM 95 100.00 (95) 13.23 23.16 (22) 18.18 (4)

CIFAR-10

Low
VAE 39 82.05 (32) 118.90 53.13 (17) 29.41 (5)
GAN 69 66.67 (46) 140.32 45.65 (21) 19.05 (4)
DM 87 89.66 (78) 85.63 60.26 (47) 61.70 (29)

High
VAE 39 100.00 (39) 19.51 30.77 (12) 33.33 (4)
GAN 69 100.00 (69) 25.78 31.88 (22) 22.73 (5)
DM 87 100.00 (87) 14.18 62.07 (54) 68.52 (37)

ImageNet (Teddy Bear)

Low
VAE 14 100.00 (14) 13.57 78.57 (11) 81.82 (9)
GAN 85 100.00 (85) 98.27 74.12 (63) 36.51 (23)
DM 87 98.85 (86) 48.45 91.86 (79) 49.37 (39)

High
VAE 14 100.00 (14) 1.36 100.00 (14) 64.29 (9)
GAN 85 100.00 (85) 26.38 83.53 (71) 32.39 (23)
DM 87 100.00 (87) 6.63 94.25 (82) 56.10 (46)

ImageNet (Pizza)

Low
VAE 25 100.00 (25) 12.96 92.00 (23) 91.30 (21)
GAN 99 88.00 (87) 172.88 88.51 (77) 46.75 (36)
DM 73 97.26 (71) 83.60 98.59 (70) 92.86 (65)

High
VAE 25 100.00 (25) 2.60 80.00 (20) 75.00 (15)
GAN 99 100.00 (99) 47.93 86.87 (86) 51.16 (44)
DM 73 100.00 (73) 12.53 100.00 (73) 86.30 (63)

For high perturbation steps, all TIGs achieved high misclas-
sification rates, with the VAE performing worst at 96.97%.
This indicates that larger perturbation steps are effective in
triggering misclassifications, even within a constrained budget.

RQ2 (Effectiveness): DMs emerged as the most ef-
fective in generating misclassification-inducing inputs,
especially at low perturbation steps, outperforming
VAEs and GANs TIGs in most cases. Under high
perturbation steps, all models showed considerable
success in triggering misclassifications, indicating that
increased perturbations uniformly promote misbehav-
iors across different architectures and datasets.

C. RQ3 (Efficiency)
The sixth column of Table III reports the average number of

iterations required by each TIG to trigger misclassifications.
For both low and high perturbation steps, DMs required

significantly fewer iterations than other GenAI TIGs for
MNIST, SVHN, and CIFAR-10. However, for ImageNet tasks,
VAEs caused misclassifications in the fewest iterations. This

result reveals an interesting trade-off with VAEs: although
they perform poorly in terms of the number of usable seeds
and misclassification-inducing inputs (RQ1 and RQ2), they
compensate by requiring fewer iterations to trigger misclassi-
fications. Specifically, VAEs generate images with lower qual-
ity than more sophisticated models, particularly for complex
datasets such as ImageNet, resulting in fewer acceptable test
inputs. On the other hand, VAEs’ training process tend to
produce a smoother and more continuous latent space, which
allows for more efficient exploration, i.e., changes in the latent
vector tend to have a direct impact on the generated image.

RQ3 (Efficiency): DMs were the most efficient for
MNIST, SVHN, and CIFAR-10. In contrast, VAEs
demonstrated the highest efficiency for ImageNet
tasks. Across all GenAI TIGs, increasing the perturba-
tion step consistently reduced the number of iterations
needed to cause misclassifications, highlighting that
larger perturbations accelerate the process of uncov-
ering classifier weaknesses.
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D. RQ4 (Validity)

The seventh column of Table III shows the percentage and
number of misclassification-inducing inputs deemed valid by
human validators, excluding those where assessors disagreed.

For simpler datasets (MNIST and SVHN), VAEs either
outperformed or performed comparably to other models at
high perturbation steps. In these cases, DMs produced more
valid inputs at low perturbation steps, despite showing lower
percentages overall, which is partially due to their higher
number of viable seeds (as discussed in RQ1). For more
complex datasets (CIFAR-10 and ImageNet), DMs generate
significantly more valid inputs. For instance, DMs produced
nearly 6↓ more valid misclassification-inducing inputs than
VAEs for the teddy bear class in ImageNet.

Interestingly, we observed that higher perturbation steps
within the same GenAI TIG do not always compromise input
validity. For instance, for the ImageNet teddy bear class, both
the number and percentage of valid inputs increased across all
GenAI TIGs. This suggests that larger perturbations can still
produce semantically valid inputs while being more effective
at inducing misclassifications (as seen in RQ3).

RQ4 (Validity): According to humans, DMs excel at
generating valid misclassification-inducing inputs for
complex datasets like CIFAR-10 and ImageNet. For
simpler datasets, GenAI TIGs demonstrate different
trade-offs between the number and ratio of valid in-
puts, depending on the chosen perturbation step.

E. RQ5 (Label Preservation)

The eighth column of Table III reports the percentage
and number of preserved labels, which represent the valid
misclassification-inducing inputs that maintained the ground-
truth labels of their corresponding seeds. These inputs are
particularly valuable for software testers.

GANs achieved remarkable results for simpler datasets
(MNIST and SVHN), particularly at high perturbation steps,
with up to 7↓ more label-preserving inputs than other GenAI
models. For more complex datasets like CIFAR-10 and Im-
ageNet, GANs exhibited a performance decline, yielding the
worst results, while DMs consistently outperformed the others,
preserving up to 32↓ more labels than GANs for CIFAR-10
under high perturbation steps. DMs achieved a high percentage
of preserved labels (i.e., > 86%) for the ImageNet pizza class,
while nearly half of the labels were not preserved for the teddy
bear class, highlighting variability in label preservation across
different tasks even within the same dataset.

RQ5 (Label Preservation): DMs achieve superior la-
bel preservation for complex datasets, achieving up to
92.86% preserved labels. For simpler datasets, GANs
frequently provided better or comparable performance
than/to other GenAI TIGs.

F. Threats to Validity
Internal Validity. To mitigate threats due to uncontrolled
variables, we integrated all GenAI models into a unified
TIG framework, ensuring consistent parameters across all
experiments, e.g., number of iterations and configuration of the
selection operators. Moreover, we studied the potential impact
of the perturbation step by performing experiments with low
and high pertubation steps, obtained following a standardized
procedure. Another possible threat may arise from survey
participants providing unreliable answers. We addressed this
threat by incorporating an ACQ in each survey, and limiting
participation to workers with high reputations.
External Validity. A possible threat is the choice of models
and datasets. To mitigate it, we chose four popular datasets
of increasing complexity, including ImageNet-1K, which con-
tains high-resolution images from 1,000 different classes.
We also considered widely recognized GenAI models from
the literature, although our results may not generalize to all
architectures. We aim to expand our comparison in the future.
Reproducibility. We have made our experimental data and
models publicly available [30].

VI. LESSONS LEARNED AND KEY INSIGHTS

A. Advanced GenAI Models Excel in Complex Tasks, but Their
Superior Performance Comes at a Higher Cost

VAEs and GANs performed well on less complex tasks,
despite their simpler architectures and training processes com-
pared to DMs. For instance, GANs produced the highest num-
ber of valid label-preserving misclassification-inducing inputs
for MNIST and SVHN at high perturbation steps. Instead,
DMs struggled with simpler datasets, as their lower resolution
and limited variation do not offer enough complexity to fully
exploit the diffusion process. However, when considering more
realistic datasets, such as CIFAR-10 and ImageNet, DMs
clearly outperform other models, producing more viable seeds
and up to 32↓ more label preserving inputs.

This superior performance comes with a trade-off in model
cost. As emerges from Table II, VAEs and GANs have much
faster inference times than DMs, which is crucial for auto-
mated testing, especially for search-based TIGs that generate
multiple inputs for several iterations. DMs consistently take
longer to generate an image compared to VAEs and GANs,
mainly because the former architecture involves multiple steps
of adding and removing noise. This process is time-consuming
and demands more memory and processing resources, making
it less efficient for tasks that require quick results.

For these reasons, testers should carefully assess task com-
plexity and their available budget before beginning a testing
campaign: in some cases, a simpler GenAI model may be more
suitable than the latest, most advanced, architectures.

B. Higher Perturbation Steps Speed Up Test Generation With-
out Compromising Input Validity or Label Preservation

Latent space exploration, guided by our fitness function,
effectively directed test generation to trigger misclassifications.
As is common in search-based testing, increasing the strength
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of the mutation, i.e., the perturbation step, tends to improve
efficiency. However, a frequent concern is that disruptive
changes in inputs may compromise their validity and reduce
their usefulness for testing [11].

In our experiments, higher perturbation steps consistently
reduced the number of iterations needed to trigger failures.
However, we found no clear evidence that increased per-
turbation steps negatively impacted input validity or label
preservation across all GenAI models.

One explanation for this phenomenon is the presence of
mechanisms ensuring the adherence of the generative process
to the target distribution, as well as the encoding of the desired
input features (e.g., label conditions in conditional GANs or
textual prompts in DMs). This capability highlights the poten-
tial of GenAI models for producing novel and meaningful test
inputs. Moreover, our TIG framework enforces the generation
of latent vectors that remain within the observed distribution
ranges reconstructed by GenAI models through the clamping
operation. Clamping restricts the values of mutated latent
vectors to a predefined range observed in the training data,
mitigating the risk of exceeding boundaries that could lead
to invalid inputs. Preliminary experiments confirmed that this
mechanism is essential for maintaining input validity, as also
highlighted by recent studies [11], [25].

C. Latent Vectors Should Be Carefully Constrained and Care-
fully Manipulated

Although constraining latent vectors was essential for effec-
tive test generation, our study identified limitations of GenAI
TIGs. For example, even advanced TIGs generated at most 15
valid, label-preserving inputs out of 100 SVHN seeds. For the
ImageNet pizza class, nearly half of the valid inputs did not
preserve the expected label.

Latent vectors constraints are less intuitive and interpretable
than preconditions in traditional software, which are typically
derived from domain-specific requirements. Moreover, latent
space exploration remains a challenging and open research
area. Advancements like formulating constraints over the
geometry of the latent space [27], latent space regulariza-
tion [69], or anomaly detection [59] should be generalized
to more complex architectures and integrated into TIGs.

VII. RELATED WORK

In the literature, TIGs for DL based image classification
have been largely compared on test effectiveness. These works
define a certain TIG more effective than others if it can
expose a higher number of misclassifications, regardless of the
validity of such inputs. Researchers also proposed and adopted
adequacy criteria specific to DL systems, such as neuron-
based coverage criteria [16], [18], [70], which assess the extent
to which test inputs exercise specific sets of neurons or DL
model layers. Despite neuron-based coverage criteria have
been extensively used to evaluate TIGs [15], [17], [71]–[73],
empirical results showed that higher neuron coverage may lead
to the generation of invalid inputs [74]. Other studies [75]

adopted mutant adequacy, e.g., the statistical notion of muta-
tion adequacy introduced by Jahangirova and Tonella [76].
These studies assess whether TIGs can expose DL model
mutations, i.e., artificially injected faults that simulate real
faults [77]. The aforementioned works do not consider GenAI
TIGs and mostly overlook the notion of test input validity and
label preservation, which may influence their results.

On the other hand, more and more recent studies are
considering the validity assessment of generated synthetic
inputs [11], [15], [42], [78]. Automation of validity assessment
has been achieved by measuring the reconstruction error of
VAEs [15], [59], [78]. However, such automated validation
does not consider label preservation, primarily focusing on
outlier detection as a proxy for validity. Other research has
involved human assessors in evaluating TIGs. Tian et al. [79]
demonstrated, through human assessment, that DL image
classifier predictions are often unreliable, as they are influ-
enced more by the surrounding context than by the predicted
object. Attaoui et al. [80] involved industry practitioners to
evaluate their feature extraction and clustering techniques for
DL systems. Riccio et al. and Zhang et al. conducted studies on
input validity, involving both automated validators and human
assessors [11], [42], [81]. They adopted a human evaluation
similar to ours to perform a comprehensive comparison of
different TIGs from the literature. Unlike their work, we
consider a broader range of classification tasks and focus
specifically on TIGs based on GenAI models, including the
latest advancements, i.e., diffusion models. While their work
only focus on validity and label preservation, we also consider
effectiveness and efficiency, by providing a framework to fairly
compare the impact of these models on test generation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a comprehensive comparison of
various GenAI models based on their ability to generate
misclassification-inducing inputs for testing image classifiers.
To achieve this, we introduced a search-based test generation
framework that integrates different GenAI models and manip-
ulates inputs by perturbing their latent space.

Our findings demonstrate that GenAI models can success-
fully generate valid, label-preserving and failure-inducing in-
puts across all considered classification tasks. Notably, simpler
GenAI models perform well on less complex tasks such as
MNIST and SVHN, while more advanced models are needed
for more challenging ones, i.e., CIFAR-10 and ImageNet.
Additionally, we found that increasing the latent vector pertur-
bation step accelerates test generation without compromising
input validity or label preservation.

This study and the proposed framework open up several
avenues for future research. We plan to conduct a broader
evaluation with more datasets and GenAI architectures and
extend our framework to incorporate more sophisticated search
algorithms and additional testing objectives, such as input
diversity and mutation killing.
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