
Adversarial Testing with Reinforcement Learning:
A Case Study on Autonomous Driving

Andréa Doreste, Matteo Biagiola, Paolo Tonella
Software Institute - Università della Svizzera italiana, Lugano, Switzerland

{andrea.doreste, matteo.biagiola, paolo.tonella}@usi.ch

Abstract—Testing autonomous driving systems (ADSs) is essen-
tial to ensure their safety. Existing testing techniques manipulate
the objects of the driving environment in order to trigger a
misbehavior of the ADS under test. Reinforcement learning (RL)
approaches have been applied to effectively modify the dynamic
objects of the environment (e.g., pedestrians and other vehicles),
also known as Non-Playable Characters (NPCs). However, ex-
isting RL approaches implement centralized controllers of the
environment, resulting in possibly unrealistic and even invalid
behaviors of the NPCs.

In this paper, we propose to model NPCs as independent
and fully autonomous agents to challenge the ADS under test
(i.e., the ego ADS). In the first step of our approach, we
train an adversarial ADS by designing a reward function as
a linear combination of two components: (1) a component that
encourages it to drive well in the given driving scenario, and
(2) an adversarial component, that smoothly guides the agent
towards a collision with the ego ADS. In our second step, we
resume training of the ego ADS, to increase its robustness towards
the behaviors of the adversarial ADS.

Our experiments on a highway driving scenario show that
the adversarial ADS is significantly more effective at generating
collisions of the ego ADS than a random baseline. Moreover,
adversarial retraining induces safe behaviors of the ego ADS,
preventing the adversarial ADS from colliding.

Index Terms—Autonomous Driving, Reinforcement Learning,
Adversarial Testing.

I. INTRODUCTION

Deep Neural Networks (DNNs) are increasingly applied to
a wide range of complex tasks, including autonomous driving.
Due to their safety-critical nature, autonomous driving systems
(ADSs) need to be thoroughly tested before deployment.

Most of the ADS testing techniques proposed in the lit-
erature manipulate the environment in which the ADS op-
erates [1]. Their objective is to cause a perturbation in the
environment, eventually resulting in a misbehavior of the ADS
(e.g., a collision with another object in the environment or an
out-of-lane event). The testing problem is formulated as an
optimization problem, where the objects in the environment,
both static and dynamic ones, are manipulated to maximize
an objective function (e.g., distance to misbehavior). One
common way to address this problem is to use search-based
testing techniques [1], [2], [3], [4], [5], [6], to effectively
find critical configurations of the environment (i.e., test cases)
given a limited search budget.

While search-based techniques are suitable to generate
static configurations of the environment (e.g., the road shape
on which the ADS drives), they are not designed to deal
with sequential interactions at runtime, which are required
when manipulating dynamic objects. On the other hand, in
the Reinforcement Learning (RL) paradigm, the agent learns
by interacting with the environment at each step, and natu-
rally deals with the runtime effects of its actions. Recently,
DEEPCOLLISION [7] and MORLOT [8] formulated the ADS
testing problem as an RL problem. In particular, they act
on the dynamics of Non-Playable Characters (NPCs) in the
environment, such as pedestrians and vehicles other than the
one controlled by the ego ADS (i.e., the ADS under test).
However, their RL agent is a centralized controller of the
environment evolution, while in real driving scenarios each
NPC acts independently.

We propose to model each NPC as a fully autonomous
and independent adversarial agent (i.e., the adversarial ADS)
to challenge the behavior of the ego ADS. Specifically, we
model the NPC vehicle that is in front of the ego ADS, as an
independent RL agent, mimicking a typical driving scenario
in which the ego ADS shares the road with other intelligent
actors. Existing studies show that such driving scenarios cover
the majority of challenging situations for an ADS, as more
than 80% of the accidents involving an ADS in California are
caused by the maneuvers of other vehicles [9], [10].

Our approach takes as input an ego ADS, modeled as an
RL agent, that it is able to drive in the presence of other
autonomous vehicles. In particular, the ego ADS is trained
to drive as fast as possible on the right lane of a highway
and to avoid collisions with the other vehicles (we name this
reward function, Quality of Driving (QoD) reward). In the
first step of our approach, we bootstrap the training of the
adversarial ADS by starting from the weights of the ego ADS.
The ego ADS acts in inference mode, and its weights are
frozen during training of the adversarial ADS. Such agent
is trained to maximize a reward function that is a linear
combination of two components. The first component is the
same reward function used to train the ego ADS (i.e., the QoD
reward), while the second component is purely adversarial,
and it aims to smoothly guide the adversarial ADS towards
triggering a collision with the ego ADS. In particular, we
penalize the adversarial ADS if it is moving away from the
ego ADS (proportionally to its relative velocity) and we reward
it with the inverse of the distance between the two vehicles

979-8-3503-0818-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ICST60714.2024.00034
2024 IEEE Conference on Software Testing, Verification and Validation
(ICST)

AtSt Rt
Rt+1

St+1

ActionState Reward

RL Agent

Environment

Fig. 1: Reinforcement learning loop. At each timestep t the
agent receives a state from the environment St. Given the state,
the agent outputs an action At that modifies the environment,
which in turn gives back a reward Rt+1 that the agent uses
for learning.

if the two agents are getting closer. Additionally, we reward
the adversarial ADS by a large amount whenever it causes a
collision.

The two components of the reward are conflicting, as
maximizing the QoD component decreases the chances of a
collision (i.e., the adversarial component decreases). However,
the objective of the testing agent is to maximize the sum of
both scalar values at each timestep. The net effect is that pure
adversarial behaviors, which would result in invalid failures
the ego ADS cannot avoid, are discouraged, since the QoD
component of the reward counteracts them. As a result, our
reward function minimizes the chances of invalid failures,
while encouraging collisions the ego ADS can learn from to
improve its robustness. To achieve this objective, the second
step of our approach consists of resuming the training of the
ego ADS in the presence of the adversarial ADS, which now
acts in inference mode.

In our experiments, accounting for approximately 100 be-
tween training and testing simulation runs, we statistically
compare the adversarial ADS resulting from our reward func-
tion with a random baseline. We empirically show that the
adversarial ADS is significantly more effective at generating
collisions than the random agent. Moreover, the retraining
step is effective at improving the robustness of the ego ADS,
by inducing a safe behavior that prevents collisions with the
adversarial ADS.

II. BACKGROUND

A. Overview

Reinforcement Learning (RL), is a learning paradigm that
consists of learning a policy, i.e., how to map states into
actions, to maximize a numerical reward signal [11]. The
agent does not know a-priori which actions lead to the highest
rewards, but it needs to learn it on its own by interacting with
the environment.

At each timestep t, the agent perceives the current state of
the environment St and selects an action At, which will make

the environment transition to the next state St+1 (see Figure 1).
The action modifies the environment, which, in turn, sends a
feedback signal to the agent, i.e., the reward Rt+1, guiding
the agent towards the desired objective. The most common
RL formulation is episodic, i.e., the interaction between the
agent and the environment ends when certain conditions hold.
In this context, the objective of the agent is to find a policy π
that maximizes the sum of the cumulative sum of the rewards
it gets in its lifetime.

This process can be formalized using a Marking Decision
Process (MDP). An MDP is a 5-tuple, ⟨S,A,R,P, p0⟩, where:

1) S is the set of all valid states;
2) A is the set of all valid actions
3) R : S ×A× S → R is the reward function;
4) P : S × S × A → P (S) is the transition probability

function, with P (St+1 | St, At) being the probability of
transitioning from state St to state St+1 after selecting
action At;

5) p0(S) is the starting state distribution, i.e., the probability
that the environment starts from a specific state S0 ∈ S.

The MDP obeys the Markov property, i.e., the future St+1

is conditionally independent of the past (St−1, . . . , S0) given
the present St. In other words, the current state St summarizes
all relevant aspects of the agent-environment interactions the
agent need to take the best decision in the present. Given a
trajectory τ , i.e., a sequence of (St, At, Rt+1, St+1), the agent
is tasked to find a policy π that maximizes the return, defined
as:

G(τ) =

T∑
t=0

Rt (1)

where T is the total number of timesteps in an episode. In
general, the RL objective is expressed as a maximization of
the expected return, as both the policy and the environment
are stochastic.

The optimal policy π∗ can be extracted from two quantities,
i.e., the state-value function Vπ(S) and the action-value func-
tion Qπ(S,A). The former quantifies how good is a certain
state S, while the latter measures the value of the state-action
pair (S,A). Both functions obey the Bellman equations [11],
i.e., recursive consistency equations that relate the values of a
state S (respectively, state-action pair (S,A)) to the values of
all possible successor states (respectively, state-action pairs).
Bellman equations can be solved in closed-form, by knowing
the transition probability function of the environment P . In
particular, by solving the Bellman equation for the action-
value function Qπ , we obtain Q∗

π , from which we can extract
π∗, by choosing in each state S the action A that maximizes
Q∗

π .

B. Deep RL

In general the transition probability function of the environ-
ment P is not known, and tabular methods that heuristically
solve the Bellman equations, such as Monte Carlo methods

2

x

y

Fig. 2: The ego (in green) and the adversarial (in magenta)
ADSs in the highway driving scenario of the HighwayEnv
simulator [17].

and temporal difference learning, are not applicable to envi-
ronments with large state and actions spaces. Deep learning
techniques enable Deep RL (DRL) algorithms to function in
such complex scenarios [12]. In particular, DRL algorithms
use Deep Neural Networks (DNNs) to approximate state and
action-value functions. The DRL algorithm that pioneered the
field is Deep Q-Newtork (DQN) [12], that introduced the
conceptual tools to deal with the instability caused by the
introduction of a non-linear function approximator.

The DQN algorithm is still one of the most popular and
effective DRL algorithms, and it is implemented in the major
open-source DRL libraries [13], [14], [15], [16]. In our work,
we leverage the DQN algorithm to address the driving task,
as the state space of the agent has continuous variables.

III. CASE STUDY

We consider a highway driving scenario implemented by
the HighwayEnv simulator [17], a widely used benchmark in
reinforcement learning [18], [19], [20], [21], [22], [23], [24]
(at the time of writing, the simulator has 2k starts on Github).

Figure 2 shows two vehicles driving in the highway sce-
nario. The vehicle on the left (in green) is the ego ADS, while
the vehicle on the right (in magenta) is the adversarial ADS.
The ego ADS drives in the two-lane scenario, keeping the
highest possible speed while avoiding the other vehicles in
the scene.

In particular, the observation space 1 of the agent is a matrix
V × F , where V is the number of vehicles in the scene, and
F is the number of features. For the example in Figure 2, the
number of rows in the observation matrix is V = 2, as there
two vehicles in the scenario, while the number of columns is
F = 4. The first two features are the x and y coordinates
of the position of a vehicle, measured in meters, while the
remaining two features are the vx and vy coordinates of the
velocity, measured in m/s.

The action space of the agent is discrete. In particular,
the environment exposes meta-actions, i.e., abstract actions
on top of the low-level throttle and steering controls. The
agent has 5 actions available, namely, switch to left lane,
switch to right lane, accelerate, decelerate and stay idle. Not

1Observation is a more general term than state, as using state implies that
all the variables of the environment are observable to the agent.

all actions are available in all states, for instance, change to
right lane when the vehicle is already at the right edge of
the road, or accelerating/decelerating when the vehicle has
already reached the maximum/minimum speed; in such cases,
the unavailable actions have the same effect of the stay idle
action. The agent’s policy runs at 1Hz, i.e., the agent takes
one action every second (which corresponds to 1 timestep),
while the environment runs at 5Hz, such that the low-level
controllers can smoothly execute the meta-action, by splitting
it into 5 sub-actions.

The reward function used to train the ego vehicle consists
of several components, encouraging the agent to drive well in
the given scenario. We name this reward Quality of Driving
(QoD) reward, defined as follows:

RQoD = ν
(
wspdRspd + wrlaneRrlane + wcolRcol

)
(2)

where Rspd encourages the agent to go at high speed, Rrlane

privileges the rightmost lane, and Rcol takes into account when
there is a collision. The scalar rewards are weighted by w(·),
and the symbol ν(·) represents a normalization function in
[0, 1]. The speed reward, weighted by wspd = 0.4, is defined
as Rspd = ν(vx), i.e., the normalized longitudinal velocity; the
normalization function in this case is a linear function mapping
the interval [20, 30] in the target interval [0, 1], where 20m/s
is the minimum velocity and 30m/s is the maximum velocity.
The rightmost-lane reward is boolean in our scenario, and it is
weighted by wrlane = 0.1. Likewise, the collision reward is one
only when the there is a collision between the two vehicles;
the corresponding weight is wcol = −1. The environment
checks if two vehicles are colliding, by computing whether
the moving polygons associated with the vehicles intersect.
Finally, the reward is normalized linearly, mapping the interval
[wcol, wspd + wrlane], i.e., respectively the minimum and the
maximum scalar rewards in a timestep, to the interval [0, 1].

At the beginning of the episode, the lanes and the speeds for
the two vehicles are sampled randomly within the respective
ranges. The longitudinal positions are also chosen randomly,
with the constraint that the adversarial vehicle is always
in front. The episode terminates successfully either when
the maximum number of timesteps (set to 30) is reached,
or when the ego ADS overtakes the adversarial ADS. This
last condition prevents the adversarial ADS from learning to
collide with the ego ADS from the back, which the ego ADS
could not avoid. On the contrary, when a collision occurs, the
episode terminates unsuccessfully (i.e., with a failure).

The HighwayEnv simulator natively supports the multi-
agent setting, which is required by our approach to both
train the adversarial ADS and resume training of the ego
ADS in the presence of the adversarial ADS. In particular,
the simulator defines a MultiAgentObservation type as
a tuple of two or more observations. Both agents perceive
themselves in the first row of the observation matrix, while
the remaining vehicle is in the second row. For instance, for
the adversarial ADS, the features in the first row are relative
to the vehicle it is controlling, while the second row lists

3

2

1

Improved
Autonomous

Driving System

Training

Retraining

Adversarial ADSEgo ADSAutonomous
Driving System

Fig. 3: Overview of our approach. The first step ❶ trains the adversarial ADS to challenge the ego ADS, while the second
step ❷ uses the trained adversarial ADS to improve it.

the features of the ego ADS; viceversa, if the perspective
is that of the ego ADS. Likewise, the simulator defines a
MultiAgentAction as a tuple of two or more actions,
that correspond to the observations the two or more agents
receive as input. In our case, the actions of the ego and of the
adversarial ADSs are collected by the simulation environment
that sends them to the respective vehicles.

IV. APPROACH

Figure 3 shows the overview of our approach. Our approach
takes as input a pre-trained ego ADS. As the environment is
not equipped with pre-trained agents for the highway scenario,
we train the ego ADS from scratch. During pre-training, the
ADS in front (see the blue vehicle in Figure 2) is a rule-
based agent that implements the Intelligent Driving Model
(IDM) [25] behavior, which includes both a longitudinal
decision policy and a lateral decision policy. The former
computes the acceleration, given the ego’s distance and speed;
the latter decides when to change lane, to let the ego maximize
its acceleration.

The first step ❶ of our approach trains the adversarial ADS,
while the pre-trained ego ADS acts in inference mode. The
training phase aims at teaching the adversarial ADS how to
effectively challenge the ego ADS, increasing the chances
of valid collisions, while minimizing the unavoidable ones.
The second step ❷ resumes the training of the ego ADS
in the presence of the adversarial ADS, which now acts in
inference mode. Indeed, reinforcement learning enables con-
tinual learning, hence the possibility for the ego ADS to adapt
to challenging situations. The two steps complement each
other, forming a virtuous cycle the developers can leverage
to improve the ego ADS.

A. Training the Adversarial ADS

In the first step of our approach, we bootstrap the training of
the adversarial ADS by starting from the already trained ego
ADS. In this way, the adversarial ADS does not need to learn
how to drive well in the given driving scenario. On the other
hand, the ego ADS acts in inference mode and its weights are
frozen for the entire duration of the training process.

The adversarial ADS uses a custom reward function with
two different components, namely a modified QoD reward
R̂QoD and the adversarial reward Radv . The first component of
the reward, encourages the adversarial ADS to keep the same
behavior as the ego ADS. We slightly modify the original
RQoD (see Equation 2), by changing the weight of the Rcol

component, i.e., we set wcol = 0, in order not to discourage
collisions.

The adversarial reward Radv has two components, namely
Rdiff, that promotes the adversarial ADS to be close to the
ego ADS, and Rep, that rewards the adversarial ADS when it
collides with the ego ADS. The reward difference component
Rdiff is defined as follows:

Rdiff =


−Dvx − a, if Dvx ⩾ 0;
−|Dvy|

b , if Dvy ̸= 0;

η(d), otherwise.
(3)

where Dvx = Avx − Evx, i.e., the difference between the x
components of the velocity of the adversarial ADS (i.e., A)
and the ego ADS (i.e., E). Similarly, Dvy is the difference
between the y components of the velocity of the two ADS.
The distances between the positions are Dx = Ax − Ex

and Dy = Ay − Ey , respectively for the x and y axes, and
d =

√
D2

x +D2
y , i.e., the Euclidean distance between the two

ADSs positions.
In the first case, the reward is negative as the adversarial

ADS is getting far from the ego ADS, and hence far from a
possible collision. In particular, when Dvx ⩾ 0, the adversarial
ADS is getting far from the ego ADS in the longitudinal
position. The constant a is a small positive constant that makes
sure that the adversarial ADS is negatively rewarded even
when Dvx = 0, as the two vehicles would have the same
velocity, hence they would never collide.

In the second case, the reward function discourages lane
changes, that occur when Dvy ̸= 0. This is because a collision
occurs when the two ADSs are on the same lane, while the
ego ADS might overtake the adversarial ADS, making future
collisions impossible, if the two vehicles are on different lanes.
On the other hand, a lane change of the adversarial ADS

4

might be crucial to cause a collision when the two vehicles
are initially on different lanes. For this reason, the adversarial
ADS is less penalized w.r.t. the first condition holding for
the longitudinal direction, as we divide |Dvy| by a positive
constant b > 1.

In the third case, the two ADSs are getting closer in the
longitudinal direction and we positively reward the adversarial
ADS with the inverse of the distance, i.e., η(d) = 1

1+d [26].
The second component of the adversarial reward is Rep,

which rewards the adversarial ADS if there is a collision with
the ego ADS. This reward is episodic, i.e., it is given to the
agent when the episode ends due to a collision. We define it
as follows:

Rep =

{
c
∑

t(R̂QoD(t) +Rdiff(t)), if Rdiff(t) > 0 ∀t;
c
∑

t R̂QoD(t), otherwise.
(4)

where the sum is considered over the number of timesteps t
of a given episode, and c is a small constant in the interval
(0, 1]. The episodic reward is proportional to the sum of
R̂QoD(t) and Rdiff(t), if Rdiff(t) > 0 for each timestep t,
while it is proportional to the sum of R̂QoD(t) otherwise. In
the initial phases of training, the adversarial ADS is exploring
the possible strategies to cause a collision. As such Rdiff will
be occasionally negative throughout the episode. In this case,
when a collision occurs, we reward the agent proportionally
to its quality of driving, to encourage good driving behaviors.
On the other hand, when the adversarial ADS has learned
the right strategies for colliding with the ego ADS, the first
condition holds and the episode reward takes into account the
sum of the Rdiff components for each timestep. In this case,
we reward the adversarial ADS proportionally to how fast it
gets close to the ego ADS before a collision occurs, as η(d)
gets higher across timesteps when d is rapidly reduced. In
any case, we compute the episodic reward as a fraction of the
aggregate return the agent receives for each episode, rather
than using a constant value. In this way, we make sure that the
bonus the agent receives is smoother and we avoid introducing
sparse, large reward values, which may cause performance
degradation during training [27].

At each timestep, the adversarial ADS receives the sum of
the two scalar rewards, i.e., Rdiff + R̂QoD. The two compo-
nents of the reward are conflicting, as R̂QoD encourages the
adversarial ADS to drive well, while Rdiff smoothly guides
it to being close to the ego ADS, increasing the chances of
a collision. Since the objective of the agent is to maximize
the sum of the two scalar rewards, it needs to take into
account R̂QoD, such that pure adversarial and possibly invalid
behaviors incentivized by Rdiff are discouraged. Indeed, pure
adversarial behaviors might generate collisions that the ego
ADS cannot avoid. Such collisions are not useful from the
testing point of view, since they do not pinpoint any weakness
of the ego ADS. The objective of our reward function is to
induce valid collisions between the adversarial and the ego
ADS, which the ego ADS could avoid by better training.

B. Ego Fine-tuning

In the second step of our approach, we enable continual
learning for the ego ADS in the presence of the adversarial
ADS trained in the previous step. This way, the knowledge
acquired in the pre-trained phase by the ego ADS is not
discarded, but the agent is fine-tuned to consider adversarial
behaviors while driving. We reuse the same Quality of Driving
reward RQoD adopted in the pre-training phase and defined
in Equation 2. On the other hand, the adversarial ADS acts in
inference mode, choosing the action that maximizes its return
G(τ).

V. EVALUATION

To assess the practical benefits of our approach, we consider
the following research questions:
RQ1 (Failure Exposure): How effective is the adversarial
ADS compared to a random baseline? RQ1 aims at assessing
how effective the adversarial ADS is at causing collisions
with the ego ADS (i.e., how many failures it exposes). We
compare the effectiveness of the adversarial ADS with an
agent that samples the action of the ADS at random. In
this research question, we evaluate the effectiveness of the
adversarial reward function in guiding the adversarial ADS
towards collisions.
RQ2 (Fault Repair): How effective is adversarial retraining
in improving the ego ADS? In RQ2, we assess to what extent
the ego ADS improves if retrained in the presence of the
adversarial ADS. RQ2 also analyzes how the ego ADS copes
with the different behaviors of the adversarial ADS.

A. Procedure

Our experimental procedure consists of: (1) pre-training the
ego ADS; (2) training the adversarial ADS and comparing
its test time performance with that of a random agent (RQ1);
(3)fine-tunin the training of the ego ADS in the presence of
the adversarial ADS and evaluating the performance of the
ego ADS at test time (RQ2).
Pre-training the Ego ADS. We first trained the ego ADS,
since there is no agent available for this environment, using the
DQN algorithm [12]. In this pre-training phase, the vehicle in
front (see Figure 2) is controlled by the IDM model. We used
the hyperparameters provided by the rl-agents library [13]
for the DQN algorithm, and we used 2k episodes as training
budget. To save the best ego ADS model to be used in the
testing phase, we considered the average reward over a window
of 50 episodes.

To account for the randomness of the training process we
trained the agent 10 times. In the testing phase, we loaded each
ego ADS model, and we tested it by using the IDM rule-based
agent controlling the vehicle in front. We tested each ego ADS
instance 10 times for 2k episodes each. Finally, we chose as
ego ADS the agent with the lowest average test failure rate.
RQ1 (Failure Exposure). We used the ego ADS model as a
starting point for the training of the adversarial ADS. We then
trained the adversarial ADS controlling the vehicle in front
10 times with a training budget of 2k episodes, choosing as

5

TABLE I: Results for RQ1 (Failure Exposure), and RQ2 (Fault Repair). Bold-faced values indicate a statistically significant
difference between the adversarial ADS and the random agent, while underlined values indicate that the magnitude of such
difference (i.e., Â12) is large.

Pre-training RQ1 (Failure Exposure) RQ2 (Fault Repair)

Ego ADS Adversarial ADS Random
p-value Â12 Train FR Avg Test FR

Train FR Avg Test FR SEM Train FR Avg Test FR SEM Avg Test FR SEM

0.03 0.00 0.00% 0.87 0.92 0.26% 0.39 0.30% 10−5 1.00 0.10 0.00

0.04 0.00 0.00% 0.89 0.90 0.22% 0.39 0.42% 10−5 1.00 0.07 0.00

0.03 0.00 0.00% 0.94 1.00 0.04% 0.39 0.36% 10−5 1.00 0.15 0.00

0.05 0.00 0.00% 0.86 0.92 0.23% 0.39 0.30% 10−5 1.00 0.02 0.00

0.07 0.00 0.00% 0.93 1.00 0.00% 0.39 0.34% 10−5 1.00 0.17 0.00

0.1 0.00 0.00% 0.89 1.00 0.00% 0.41 0.27% 10−5 1.00 0.04 0.00

0.2 0.00 0.00% 0.91 0.90 0.17% 0.39 0.38% 10−5 1.00 0.14 0.00

0.11 0.01 0.06% 0.90 0.93 0.12% 0.39 0.31% 10−5 1.00 0.03 0.00

0.11 0.00 0.00% 0.91 0.93 0.21% 0.39 0.57% 10−5 1.00 0.28 0.00

0.11 0.09 0.26% 0.97 1.00 0.00% 0.38 0.30% 10−5 1.00 0.05 0.00

Average 0.09 0.01 0.03% 0.91 0.95 0.13% 0.39 0.35% 10−5 1.00 0.11 0.00

SEM — 0.92% — — 1.37% — 0.17% — — — — —

constants for the adversarial reward function a = 0.01, b = 3
(see Equation 3), and c = 0.1 (see Equation 4). We kept the
hyperparameters of the DQN algorithm and the window size
for saving the best agent unchanged.

In the testing phase, we load the ego ADS model and
each instance of the adversarial ADS controlling the vehicle
in front. For each instance we then executed 10 runs, each
lasting 2k episodes. To build a baseline for comparison, we
replaced the adversarial ADS instances with a random agent
controlling the vehicle in front (i.e., an agent that chooses
uniformly at random among the 5 available discrete actions in
each timestep). We executed the random agent 10 times for 2k
episodes each, to account for its randomness. We repeated the
process 10 times to compare each random agent’s execution
with each instance of the adversarial ADS.

Each test episode in the testing phase consists of a different,
randomly generated, test scenario. A test scenario in the
considered environment is defined by the initial state of the ego
vehicle and of the front (adversarial) vehicle, where each state
consists of the vehicle’s x, y positions, with y determining the
lane, as well as the vehicle’s vx, vy longitudinal and vertical
components of the initial speed. Moreover, the longitudinal
position of the vehicle in front is constrained to be greater
than the longitudinal position of the ego vehicle by some
margin ∆x (in our experiments we randomly sample the initial
separation ∆x between vehicles in the range [0.5, 2] meters).
RQ2 (Fault Repair). To resume training of the ego ADS,
we considered the adversarial ADS model with the highest
average test failure rate. Then, we carried out retraining of the
ego ADS 10 times for 2k episodes each, with the adversarial
ADS controlling the vehicle in front. Also in this case, we kept

the hyperparameters of the DQN algorithm and the window
size for saving the best agent unchanged. Finally, we tested
each retrained ego ADS 10 times for 2k episodes each.

B. Metrics

RQ1 (Failure Exposure). To answer RQ1, we measured the
test failure rates of the adversarial ADS and the random agent
across 2k episodes for each run. Regarding the adversarial
ADS, we computed the standard error of the mean (SEM)
of the test failure rate, to evaluate both its stability across
training runs and its stability across repetitions of the test
process, which is also affected by non-determinism, as at
testing time we generate 2k test scenarios randomly. We
used a 5% threshold to determine whether the test failure
rate is stable [28] across runs/test executions. We rigorously
compared the two failure rates using the Mann-Whitney U
test [29] (with a significance level α = 0.05), and the
Vargha-Delaney effect size [30] to assess the magnitude of
the difference, as previous literature suggests [31].
RQ2 (Fault Repair). To answer RQ2, we measured the test
failure rates of each ego ADS instance and computed the SEM
to analyze whether the test failure rate is stable across runs/test
executions. Also in this case we used a 5% threshold.

C. Results

Pre-training the Ego ADS. Columns 2–4 of Table I show the
results of the pre-training phase of the Ego ADS. Column 2
reports the training failure rate for each of the 10 runs. For
each instance, we measured the training failure rate as the
average failure rate across the last 100 training episodes.
Across the 10 runs the training failure rate is, on average,

6

A B

Fig. 4: Trend of the average cumulative reward (A) and of the average failure rate, during 2k training episodes. The two metrics
are averaged across 10 training runs.

0.09. Column 3 shows the average test failure rate for each
ego ADS instance, across 10 testing executions of 2k episode
each. The average test failure rate ranges from a minimum
of 0.0 to a maximum of 0.09, with an average of 0.01. The
average SEM is 0.03% (Column 4) across test executions, with
the highest being 0.26%. Across training runs (last row), SEM
is also remarkably low (0.92%), indicating that the RL training
process for the ego ADS converges to a stable test-time failure
rate.

It should be noticed that a lower failure rate at testing than
at training time is expected with reinforcement learning (while
the opposite happens with supervised deep learning), because
the RL agent finds the optimal policy by exploration (trial
and error), not just by weight optimization, which makes the
learning process less linear. Often the optimal agent is not the
one observed in the last episode, as the exploration promoted
by RL can also introduce regressions. The average SEM is
0.03% (Column 4), with the highest being 0.26%.

Overall, by looking at the test failure rate we conclude
that the ego ADS is well-trained. Moreover, an average SEM
lower than 5% indicates that the training process is stable,
i.e., that it produces ego ADS instances with similar test time
performance across multiple test executions.
RQ1 (Failure Exposure). The subplot A of Figure 4 shows
the growth curve for the reward value across the episodes of
adversarial training. Subplot B shows the trend of the training
failure rate over time, which indicates the adversarial vehicle’s
ability to induce collisions. The trends of the two plots show
that our reward function is effective and smoothly guides the
learning process of the adversarial agent.

Columns 5–11 of Table I show the results for the first
research question. Across 10 runs the average training failure
rate is 0.91 (Column 5), with a minimum of 0.87, and a
maximum of 0.97. This indicates that the training process is
effective and the adversarial ADS learns how to make the
ego vehicle fail. Column 6 shows the average test failure rate
for each adversarial ADS instance. We observe that testing

failure rates, on average, are higher than training failure rates,
as the adversarial DQN agent is deterministic at testing time
and exploits the best actions at each timestep. Comparing
the average test failure rates of the adversarial ADS with
those obtained with the random agent (Column 8), we see
that the former achieves an average test failure rate of 0.95
across 10 runs, while the latter does not go above 40%
(i.e., 0.39). For each pair of agents adversarial-random, we
computed the p-value (Column 10) and the effect size Â12

(Column 11). Results show that each adversarial ADS instance
has a significantly higher average test failure rate, with a
large effect size, than random. Moreover, the average SEM for
the average test failure rate of the adversarial ADS is 0.13%
(Column 7), with a maximum of 0.26%, across test executions;
it is 1.37% across adversarial training runs. This indicates that
adversarial training is stable (i.e., SEM < 5%), producing
adversarial ADS instances with similar test time performance
across multiple runs. The SEM for Random is also low across
repeated executions (i.e., 0.17%), mostly because the number
of test executions (i.e., 2k) is high enough to stabilize the test
failure rate across 10 repetitions. Hence, we can conclude that
our estimations of the failure rates both for the adversarial
ADS and for Random are reliable and provide a solid ground
for our comparative analysis.

RQ1 (Failure Exposure): The adversarial ADS is
effective at generating collisions with the ego ADS
at test time. Compared to the random agent, it is
significantly more effective with a large effect size.
Moreover, the training of the adversarial ADS is stable
across multiple runs, as it produces agents with similar
test failure rate.

Qualitative analysis. Figure 5 shows two examples of colli-
sions caused by the adversarial ADS. The subplot A, shows the
adversarial ADS mimicking the behaviors of the ego ADS. In
particular, both the ego and the adversarial ADS change lane

7

A B

Mimicking Behaviour Adversarial Switching Lane

Fig. 5: Two collision patterns triggered by the adversarial ADS at testing time. The ego ADS is shown in green, while the
adversarial ADS in front is shown in magenta. When the ego ADS collides, it changes color to orange.

at the same time. The ego ADS is not able to react quickly, by
either changing lane or slowing down, to avoid the collision
with the adversarial ADS in front. On the other hand, in the
subplot B, the ego ADS keeps its lane, while the adversarial
ADS changes it (from bottom lane to top lane). Also in this
case the ego ADS is not able to slow down in time and cannot
prevent the collision.
RQ2 (Fault Repair). Columns 12–13 of Table I show the
results of the retraining process in terms of training failure
rate (Column 12) and average test failure rate (Column 13).
The training failure rate across the 10 runs is 0.11 on average,
drastically reducing the failure rate observed during training
of the adversarial ADS (i.e., 0.91 on average). Interestingly,
the average failure rate is 0.0 at test time, for each instance
of the retrained ego ADS.

We analyzed the reasons for this behavior by tracking the
longitudinal component of the velocity of the ego and the
adversarial ADSs in three scenarios: (1) after the pre-training
phase of the ego ADS, (2) after step ❶, i.e., the training of
the adversarial ADS, and (3) after step ❷, i.e., the retraining
of the ego ADS in the presence of the trained adversarial
ADS. For this analysis, we considered the best agents in each
phase, i.e., those with the best test failure rate, and we tracked
the velocities for 100 testing episodes. For each episode, we
set the initial velocity at 25m/s, instead of sampling it at
random, to ease the visualization of the trend of the velocity
over time. Moreover, since episodes might have different
lengths, we padded episodes shorter than 30 timesteps, i.e.,
the maximum duration, with the last velocity value registered
in the respective episodes. This is consistent with the reward
function used to train the ego ADS, which promotes high speed
and high quality of driving.

Figure 6 shows the longitudinal velocity trends in the three
scenarios described above (respectively, subplots A, B, and
C). The solid line represents the average velocity across 100
episodes, while the shaded contours represent the standard
deviation. After the pre-training phase (i.e., subplot A), we
observe that the ego ADS maximizes its velocity almost
immediately after the beginning of the episode. The behavior is

the same for all the runs, as the ego ADS reaches the maximum
velocity of 30m/s after 4 timesteps on average.

After the training of the adversarial ADS (i.e., subplot
B), the ego ADS initially increases its velocities in the first
timesteps, while the adversarial ADS decreases it to collide
with the ego ADS. The episodes are on average very short, i.e.,
around 3 timesteps, as the adversarial ADS ends the episode
by causing a collision. The velocities of both vehicles go
below the minimum, i.e., 20m/s, as the last velocities values
are recorded at the moment of the collision. Interestingly, the
velocity of the adversarial ADS is, on average, lower than that
of the ego ADS when there is a collision. This indicates some
(unsuccessful) attempt to avoid the collision by reducing the
speed of the vehicle, trying to keep it below the speed of the
adversarial ADS.

After resuming the training of the ego ADS in the presence
of the adversarial ADS (i.e., subplot C), the adversarial ADS
has the same or similar behaviors as before, as during retrain-
ing of the ego ADS its weights are frozen. On the other hand,
the ego ADS has learned that, in order to avoid collisions,
it has to decrease its velocity to the minimum. In this way,
the two vehicles will never collide, since they have the
same velocity and are separated in the longitudinal/latitudinal
direction. Indeed, all episodes last 30 timesteps on average
with a zero standard deviation.

From a qualitative point of view, the strategy learned by
the ego ADS to avoid collisions in the presence of adversarial
vehicles, consists of slowing down in order to keep a safe
distance from the adversarial ADS, or “drive slow, drive safe”.

RQ2 (Fault Repair): Resuming training of the ego
ADS in the presence of a trained adversarial ADS is
beneficial to improve the robustness of the ego ADS.
In particular, retraining induces a cautious driving
behavior, consisting of reducing the velocity to keep a
safe distance and avoid collisions with the adversarial
ADS.

Discussion. Our retraining experiment shows that the overall

8

After Pre-training After step 1 After step 2

A B C

Fig. 6: Longitudinal velocity over time. The leftmost plot (i.e., A), shows the velocity of the ego ADS after the pre-training
phase. The center plot (i.e., B) shows the velocities of the ego (in blue) and adversarial ADSs (in orange), after step ❶, i.e.,
the training of the adversarial ADS. Likewise, the rightmost plot (i.e., C) shows the velocities of the ego and adversarial ADSs
after step ❷, i.e., the retraining of the ego ADS in the presence of the adversarial ADS.

approach is effective, and that the ego ADS can learn a
strategy to deal with the presence of an adversarial vehicle
that intentionally challenges it. However, one might question
the likelihood of encountering such adversarial behaviors in
real driving conditions, especially because the cost to avoid
adversarial collisions is a substantial reduction of the ego
vehicle’s speed when the front vehicle slows down, which
might be seen as a reduction of the quality of driving, if speed
is kept very low for no reason.

To accommodate different trade-offs between safety and
speed of driving, one might play with the quality of driving
reward (see Equation 2). Indeed, the parameter wcol can be
seen as the ego vehicle’s risk aversion. In our experiments,
we set it to -1. A lower absolute value of this parameter
(e.g., -0.5 or -0.1) could be used to induce a higher risk
propensity, which means the ego vehicle would attempt to
drive faster, accepting that occasionally a collision may happen
in the presence of strongly adversarial behaviors. If such
behaviors are deemed as very unlikely, slightly increasing the
risk propensity of the ego ADS might be acceptable. We intend
to conduct experiments in this direction in our future work,
especially because they might trigger novel strategies to deal
with adversarial behaviors.

D. Threats to Validity

External Validity. Using one driving simulator and one ADS,
may pose an external validity threat. To mitigate this issue,
we resorted to the widely used DQN algorithm [12], which
showed a very low test failure rate in nominal conditions.
As driving simulator, we selected HighwayEnv [17] which
is extensively used in reinforcement learning research, as it
supports multi-agent training and testing [18], [19], [20], [21],
[22], [23], [24]. Another threat to external validity comes
from the custom design of the reward function. Indeed, our
experiments show that our reward function is effective for the
highway scenario; however, it might not generalize to other
driving scenarios. On the other hand, more general reward

functions that generalize across driving scenarios might not
be as effective. In our future work, we plan to investigate the
trade-off between generalization and effectiveness.
Internal Validity. We extensively tested our tool and our test
scripts to reduce the risk that bugs affecting our code could
produce wrong results.
Conclusion Validity. Random variations in the execution of
our experiments may pose threats to conclusion validity. To
mitigate this issue, we executed multiple runs of training and
testing to account for the randomness of the DRL algorithm,
as well as the initial states of the vehicles in the driving sim-
ulator. The comparison between our approach and the random
baseline is also affected by non-determinism. We mitigated this
threat, by executing the two agents under identical conditions,
and with the same testing budget (in terms of number of
episodes). We also measured SEM to assess the stability of
the measured failure rates, and we conducted statistical tests to
corroborate our conclusions about the existence of a significant
difference between our approach and the random baseline.
Reproducibility. To support reproducibility, we make our
source code available online [32]. Moreover, we only used
open-source tools and subjects in our evaluation.

VI. RELATED WORK

Several techniques have been proposed in the literature
to test autonomous driving systems (ADSs) [1], [33], [34],
[35]. ASFAULT [5] uses search-based algorithms combined
with procedural content generation to generate virtual roads.
Abdessalem et al. [6] generate critical scenarios by using
decision trees to guide the search towards critical features.
Riccio et al. propose DEEPJANUS [2] whose objective is to
find road configurations at the frontier of behaviors of the ADS
under test. Moreover, they propose DEEPHYPERION [3], [36]
that characterizes the road shapes based on both their structural
features and the behavioral features of the ADS under test.
Calò et al. [37] propose two search-based algorithms to
generate test scenarios that induce avoidable collisions. On

9

the other hand, SAMOTA [38] and INDAGO [39], respectively
for Deep Learning (DL) and Reinforcement Learning (RL)
systems, use a surrogate model of the environment to speed
up the generation of critical test scenarios. Giamattei et al.
propose CART [40], which builds a casual model of the
environment and executes only the promising tests suggested
by the model. However, such approaches are effective when
generating static configurations of the environment (e.g., road
shapes). In our work, our testing agent is an adversarial ADS
controlling the vehicle in front rather than a generator of
static configurations. In such situations, RL is more suitable to
control the adversarial ADS at runtime to react to the actions
of the ego ADS.

Regarding the application of RL to ADS testing, DEEPCOL-
LISION [7] and MORLOT [8] model the state space of the RL
agent as a set of continuous variables describing the ADS
under test and its operating environment. Such continuous
variables include, for example, the locations of the ADS and of
the other vehicles, the pedestrians, and the state of the traffic
lights. The action space of the agent is discrete, acting on
the dynamics of the Non-Playable Characters (NPCs) in the
environment such as pedestrians and other vehicles. Regarding
the reward function, DEEPCOLLISION rewards the agent by
computing, at each step, the probability of collision between
the ADS under test and the vehicle in front, while MORLOT
aims to find violations of multiple safety and functional
requirements, modeling each of them as a separate reward
function. In both DEEPCOLLISION and MORLOT, the RL
agent controls multiple actors in the environment, to maximize
the reward function. On the other hand NADE [41], goes in
the direction of mixing naturalistic and adversarial behaviors.
In particular, a set of Background Vehicles (BV) acts according
to a probabilistic distribution of human driving behaviors.
From time to time, a specific BV is selected to act in
adversarial mode, taking actions to provoke the crash of the
ADS under test. NADE models the state space of the RL
agent as a set of continuous variables, and rewards the RL
agent only when a crash occurs.

DEEPCOLLISION, MORLOT and NADE have in common
the fact that a single, centralized entity controls the envi-
ronment and all its NPCs. However, in real-world driving
conditions, each NPC acts independently, and it is character-
ized by its own autonomous behavior. Indeed, a single agent
controlling the whole environment may result in NPCs with
possibly unrealistic or even invalid behaviors. In our work,
we model the NPC vehicle-in-front as a fully autonomous and
independent agent. We train such agent with an adversarial re-
ward function to challenge the ego ADS under test. Moreover,
we close the evaluate-train loop, by resuming training of the
ego ADS in the presence of the adversarial ADS, to increase
its robustness.

The idea of introducing an adversarial agent at testing time
is not new. Behzadan and Munir [42] present a preliminary
study applying an RL agent to induce direct collisions with
the ADS under test in a urban road environment. The reward
function is proportional to the minimum distance between the

Ego and the Adversarial ADS, making the reward higher when
the distance is reduced. Li et al. [43] and Ma et al. [44]
formulate the training of an Ego ADS as a Two-player Zero-
sum Markov Game (TZMG), where the Ego ADS is trained,
from the beginning, in the presence of an Adversarial ADS.
In TZMG the objective of the Ego ADS is to maximize the
cumulative reward, while the objective of the Adversarial ADS
is to minimize it. This setup helps the Ego ADS to learn a safe
driving policy by anticipating the most destructive behavior of
adversarial vehicles.

The work by Sharif et al. [45] is the most similar to
ours. In particular, they propose an adversarial RL agent to
induce collisions at road intersections. Their adversarial agent
is guided by a binary reward function, giving a positive reward
only when collisions occur, while we found that a smoother
reward function is an essential component of the adversarial
ADS. In their setting [45], the vehicle controlled by the
adversarial agent is not present during the training of the ego
ADS, which makes collisions much more likely when such
vehicle is introduced, and might explain the effectiveness of
a binary reward. On the contrary, our setting is more realistic
as we include a front vehicle even when training the ego
ADS, making the task of inducing collisions more challenging
for the adversarial ADS. Moreover, their evaluation of the
adversarial ADS [45] is quite preliminary, being based on a
single observation with no baseline.

Ours is the first work where adversarial ADSs are (1) pro-
posed as an integral part of a virtuous evaluate-train loop,
and (2) evaluated systematically with a solid empirical study,
taking into account the statistical variability of training DRL
agents [46]. Ours is the first paper providing empirical and
statistical evidence about the viability and practical usefulness
of adversarial test agents for the improvement of autonomous
vehicles.

VII. CONCLUSION AND FUTURE WORK

We proposed an adversarial approach to test autonomous
driving systems (ADSs). Our approach focuses on training the
adversarial ADS with a custom reward function that balances
quality of driving and chances of collisions to avoid pure
adversarial behaviors. The second step consists of improving
the ego ADS by retraining it in the presence of the adversarial
ADS. Results show that the adversarial ADS is significantly
more effective than a random baseline at causing collisions
with the ego ADS. Adversarial retraining induces a safe driv-
ing behavior in the ego ADS, that lets it avoid the collisions
the adversarial ADS would otherwise cause.

In our future work, we plan to explore other driving scenar-
ios and to investigate cooperation strategies among multiple
adversarial agents, which work together to challenge and
eventually improve the ego ADS under test. We will also
investigate different parameters of the reward function used
during retraining to introduce a higher risk propensity into
the ego ADS. The purpose is to explore the trade-off between
safety and speed of driving, and to analyze whether different

10

strategies emerge to deal with adversarial behaviors while
keeping a higher speed.

REFERENCES

[1] S. Tang, Z. Zhang, Y. Zhang, J. Zhou, Y. Guo, S. Liu, S. Guo, Y.-F. Li,
L. Ma, Y. Xue et al., “A survey on automated driving system testing:
Landscapes and trends,” ACM Transactions on Software Engineering
and Methodology, 2023.

[2] V. Riccio and P. Tonella, “Model-based exploration of the frontier of
behaviours for deep learning system testing,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp. 876–
888.

[3] T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, “Deephyperion:
exploring the feature space of deep learning-based systems through
illumination search,” in Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, 2021, pp. 79–90.

[4] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous driving
systems,” in 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE). IEEE, 2020, pp. 25–36.

[5] A. Gambi, M. Müller, and G. Fraser, “Automatically testing self-driving
cars with search-based procedural content generation,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA, 2019, pp. 318–328.

[6] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algorithms,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), May 2018, pp. 1016–1026.

[7] C. Lu, Y. Shi, H. Zhang, M. Zhang, T. Wang, T. Yue, and S. Ali, “Learn-
ing configurations of operating environment of autonomous vehicles to
maximize their collisions,” IEEE Transactions on Software Engineering,
vol. 49, no. 1, pp. 384–402, 2022.

[8] F. U. Haq, D. Shin, and L. C. Briand, “Many-objective reinforcement
learning for online testing of dnn-enabled systems,” in 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE,
2023, pp. 1814–1826.

[9] F. M. Favarò, N. Nader, S. O. Eurich, M. Tripp, and N. Varadaraju, “Ex-
amining accident reports involving autonomous vehicles in california,”
PLoS one, vol. 12, no. 9, p. e0184952, 2017.

[10] N. H. T. S. Administration et al., “Summary report: Standing general
order on crash reporting for automated driving systems,” 2022.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] E. Leurent, “rl-agents: Implementations of reinforcement learning algo-
rithms,” https://github.com/eleurent/rl-agents, 2018.

[14] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[15] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta,
and J. G. Araújo, “Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms,” Journal of Machine Learning
Research, vol. 23, no. 274, pp. 1–18, 2022. [Online]. Available:
http://jmlr.org/papers/v23/21-1342.html

[16] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. E. Gonzalez, M. I. Jordan, and I. Stoica, “RLlib: Abstractions
for distributed reinforcement learning,” in International Conference on
Machine Learning (ICML), 2018.

[17] E. Leurent, “An environment for autonomous driving decision-making,”
https://github.com/eleurent/highway-env, 2018.

[18] M. Xu, P. Huang, F. Li, J. Zhu, X. Qi, K. Oguchi, Z. Huang,
H. Lam, and D. Zhao, “Accelerated policy evaluation: Learning adver-
sarial environments with adaptive importance sampling,” arXiv preprint
arXiv:2106.10566, 2021.

[19] H. Sun, S. Feng, X. Yan, and H. X. Liu, “Corner case generation and
analysis for safety assessment of autonomous vehicles,” Transportation
research record, vol. 2675, no. 11, pp. 587–600, 2021.

[20] D. Chen, Z. Li, Y. Wang, L. Jiang, and Y. Wang, “Deep multi-agent
reinforcement learning for highway on-ramp merging in mixed traffic,”
arXiv preprint arXiv:2105.05701, 2021.

[21] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu, “Intelligent driving in-
telligence test for autonomous vehicles with naturalistic and adversarial
environment,” Nature communications, vol. 12, no. 1, pp. 1–14, 2021.

[22] B. Brito, A. Agarwal, and J. Alonso-Mora, “Learning interaction-aware
guidance policies for motion planning in dense traffic scenarios,” arXiv
preprint arXiv:2107.04538, 2021.

[23] S. Zhang, L. Wen, H. Peng, and H. E. Tseng, “Quick learner automated
vehicle adapting its roadmanship to varying traffic cultures with meta
reinforcement learning,” in 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC). IEEE, 2021, pp. 1745–1752.

[24] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Robust predictable
control,” Advances in Neural Information Processing Systems, vol. 34,
pp. 27 813–27 825, 2021.

[25] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review E,
vol. 62, no. 2, p. 1805, 2000.

[26] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans.
Software Eng., vol. 39, no. 2, pp. 276–291, 2013. [Online]. Available:
https://doi.org/10.1109/TSE.2012.14

[27] S. Huang, S. Ontañón, C. Bamford, and L. Grela, “Gym-µrts: Toward
affordable full game real-time strategy games research with deep
reinforcement learning,” in 2021 IEEE Conference on Games (CoG),
Copenhagen, Denmark, August 17-20, 2021. IEEE, 2021, pp. 1–8.
[Online]. Available: https://doi.org/10.1109/CoG52621.2021.9619076

[28] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: mutation
testing of deep learning systems based on real faults,” in ISSTA ’21:
30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, Denmark, July 11-17, 2021, C. Cadar
and X. Zhang, Eds. ACM, 2021, pp. 67–78. [Online]. Available:
https://doi.org/10.1145/3460319.3464825

[29] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[30] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[31] A. Arcuri and L. C. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,” Softw.
Test. Verification Reliab., vol. 24, no. 3, pp. 219–250, 2014. [Online].
Available: https://doi.org/10.1002/stvr.1486

[32] A. Doreste, “Replication package.” https://github.com/
testingautomated-usi/adversarial-rl-icst-2024, 2024.

[33] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio, “SBST
tool competition 2021,” in 14th IEEE/ACM International Workshop
on Search-Based Software Testing, SBST 2021, Madrid, Spain,
May 31, 2021. IEEE, 2021, pp. 20–27. [Online]. Available:
https://doi.org/10.1109/SBST52555.2021.00011

[34] A. Gambi, G. Jahangirova, V. Riccio, and F. Zampetti, “SBST tool
competition 2022,” in 15th IEEE/ACM International Workshop on
Search-Based Software Testing, SBST@ICSE 2022, Pittsburgh, PA,
USA, May 9, 2022. IEEE, 2022, pp. 25–32. [Online]. Available:
https://doi.org/10.1145/3526072.3527538

[35] M. Biagiola, S. Klikovits, J. Peltomäki, and V. Riccio, “SBFT
tool competition 2023 - cyber-physical systems track,” in IEEE/ACM
International Workshop on Search-Based and Fuzz Testing, SBFT@ICSE
2023, Melbourne, Australia, May 14, 2023. IEEE, 2023, pp. 45–48.
[Online]. Available: https://doi.org/10.1109/SBFT59156.2023.00010

[36] T. Zohdinasab, V. Riccio, A. Gambi, and P. Tonella, “Efficient and
effective feature space exploration for testing deep learning systems,”
ACM Transactions on Software Engineering and Methodology, vol. 32,
no. 2, pp. 1–38, 2023.

[37] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Generating
avoidable collision scenarios for testing autonomous driving systems,”
in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST). IEEE, 2020, pp. 375–386.

[38] F. U. Haq, D. Shin, and L. Briand, “Efficient online testing for dnn-
enabled systems using surrogate-assisted and many-objective optimiza-
tion,” in Proceedings of the 44th International Conference on Software
Engineering, 2022, pp. 811–822.

11

https://github.com/eleurent/rl-agents
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v23/21-1342.html
https://github.com/eleurent/highway-env
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/CoG52621.2021.9619076
https://doi.org/10.1145/3460319.3464825
https://doi.org/10.1002/stvr.1486
https://github.com/testingautomated-usi/adversarial-rl-icst-2024
https://github.com/testingautomated-usi/adversarial-rl-icst-2024
https://doi.org/10.1109/SBST52555.2021.00011
https://doi.org/10.1145/3526072.3527538
https://doi.org/10.1109/SBFT59156.2023.00010

[39] M. Biagiola and P. Tonella, “Testing of deep reinforcement
learning agents with surrogate models,” ACM Trans. Softw. Eng.
Methodol., nov 2023, just Accepted. [Online]. Available: https:
//doi.org/10.1145/3631970

[40] L. Giamattei, A. Guerriero, R. Pietrantuono, and S. Russo, “Causality-
driven testing of autonomous driving systems,” ACM Trans. Softw.
Eng. Methodol., dec 2023, just Accepted. [Online]. Available:
https://doi.org/10.1145/3635709

[41] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu, “Intelligent driving in-
telligence test for autonomous vehicles with naturalistic and adversarial
environment,” Nature communications, vol. 12, no. 1, p. 748, 2021.

[42] V. Behzadan and A. Munir, “Adversarial reinforcement learning frame-
work for benchmarking collision avoidance mechanisms in autonomous
vehicles,” IEEE Intelligent Transportation Systems Magazine, vol. 13,
no. 2, pp. 236–241, 2019.

[43] F. Li, M. Zhao, J. Wagner, and Y. Wang, “Adversarial learning for safe
highway driving based on two-player zero-sum game,” in 2023 American
Control Conference (ACC). IEEE, 2023, pp. 472–477.

[44] X. Ma, K. Driggs-Campbell, and M. J. Kochenderfer, “Improved ro-
bustness and safety for autonomous vehicle control with adversarial
reinforcement learning,” in 2018 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2018, pp. 1665–1671.

[45] A. Sharif and D. Marijan, “Adversarial deep reinforcement learning for
improving the robustness of multi-agent autonomous driving policies,”
in 29th Asia-Pacific Software Engineering Conference, APSEC 2022,
Virtual Event, Japan, December 6-9, 2022. IEEE, 2022, pp. 61–70.
[Online]. Available: https://doi.org/10.1109/APSEC57359.2022.00018

[46] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” in Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, S. A. McIlraith and K. Q. Weinberger,
Eds. AAAI Press, 2018, pp. 3207–3214. [Online]. Available:
https://doi.org/10.1609/aaai.v32i1.11694

12

https://doi.org/10.1145/3631970
https://doi.org/10.1145/3631970
https://doi.org/10.1145/3635709
https://doi.org/10.1109/APSEC57359.2022.00018
https://doi.org/10.1609/aaai.v32i1.11694

