
Adaptive Random Testing with Qgrams: The Illusion Comes

True

MATTEO BIAGIOLA, Università della Svizzera italiana, Switzerland
ROBERT FELDT, Chalmers University of Technology, Sweden
PAOLO TONELLA, Università della Svizzera italiana, Switzerland

Adaptive Random Testing (ART) has faced criticism, particularly for its computational inefficiency, as high-
lighted by Arcuri and Briand [1]. Their analysis clarified how ART requires a quadratic number of distance
computations as the number of test executions increases, which limits its scalability in scenarios requiring
extensive testing to uncover faults. Simulation results support this, showing that the computational overhead
of these distance calculations often outweighs ART’s benefits. While various ART variants have attempted to
reduce these costs, they frequently do so at the expense of fault detection, lack complexity guarantees, or are
restricted to specific input types, such as numerical or discrete data.

In this paper, we introduce a novel framework for adaptive random testing that replaces pairwise distance
computations with a compact aggregation of past executions, such as counting the Qgrams observed in
previous runs. Test case selection then leverages this aggregated data to measure diversity (e.g., entropy of
Qgrams), allowing us to reduce the computational complexity from quadratic to linear.

Experiments with a benchmark of six web applications, show that ARTwith Qgrams covers, on average, 4×
more unique targets than random testing, and 3.5× more than ART using traditional distance-based methods.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: software testing, adaptive random testing, diversity-based testing

ACM Reference Format:

Matteo Biagiola, Robert Feldt, and Paolo Tonella. 2025. Adaptive Random Testing with Qgrams: The Illusion
Comes True. In Proceedings of ACM International Conference on the Foundations of Software Engineering (FSE

’25). ACM, New York, NY, USA, 20 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Adaptive Random Testing (ART) [9] operates on the assumption that failure regions in the input
space are contiguous, separated by large areas where the software performs without error. Based
on this, a random test generator can be optimized by ensuring broader exploration of the input
space, by increasing diversity. ART achieves this by first generating a set of candidate inputs and
then selecting those at the farthest distance from previously executed inputs.

While ART enhances the exploration of the input space, it introduces a significant computational
cost: calculating the distances between all new candidates and every previously executed test. This
observation led Arcuri and Briand [1] to deem ART’s effectiveness an “illusion of effectiveness”.
In their work, they performed a rigorous theoretical analysis, further supported by simulations,

Authors’ Contact Information: Matteo Biagiola, matteo.biagiola@usi.ch, Università della Svizzera italiana, Lugano, Switzer-
land; Robert Feldt, robert.feldt@chalmers.se, Chalmers University of Technology, Gothenburg, Sweden; Paolo Tonella,
paolo.tonella@usi.ch, Università della Svizzera italiana, Lugano, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
FSE ’25, June 23rd–27th, 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 Biagiola et al.

demonstrating that the benefits of ART’s reduction in the number of test executions–achieved
through a higher probability of failure detection–are outweighed by the computational expense of
distance calculations in nearly all practical scenarios. Specifically, when a fault leads to a failure
with only a low probability, making it difficult to detect, ART’s additional computational costs only
pay off when the test execution time is unrealistically longer than the cost of distance computation.

In this paper, we introduce a new framework for adaptive random testing that removes the need
for pairwise distance calculations, reducing ART’s computational cost from quadratic to linear. The
key innovation lies in how we manage previously executed tests: we compute an intermediate
structure, called the aggregation, which is easily updated incrementally. Rather than comparing
each new input to all prior tests individually, the distance is calculated once against the aggregation.
We instantiate this framework using Qgrams, consecutive sequences of 𝑄 tokens in the input,
where the Qgram counts of the executed set serves as the aggregation. This structure allows for
easy updates as new inputs are selected or considered. To measure diversity, we can calculate
metrics like entropy from Qgram counts.
We replicated the theoretical analysis conducted by Arcuri and Briand [1] and demonstrated

that Qgram aggregation indeed reduces the complexity of diversity computations from quadratic
to linear. As a consequence, for ART to outperform random testing, the test execution time need
only be one order of magnitude (or more, naturally) greater than the time for entropy computation.
We validated these theoretical insights through a simulation experiment modeled after Arcuri
and Briand’s work. The results show that, in low-probability fault scenarios, ART with Qgram
aggregation is significantly more effective than random testing, exposing faults with a 2.6× to 3.4×
higher probability and requiring approximately 10× fewer test executions. In contrast, ART with
traditional distance computation proved impractical.
We further applied our Qgrams-based ART test selector to six web applications, for which we

found that test execution times were three orders of magnitude higher than the cost of entropy
computation (i.e. measured in seconds versus milliseconds). The experimental results reveal that
ARTwith Qgram aggregation not only achieves greater functional coverage of the web applications
but also improves efficiency and identifies more unique coverage targets compared to both random
testing and ART with distance computation. This advantage is especially pronounced in web
applications with hard-to-cover functionalities. Across all web applications tested, ART with
Qgram aggregation covers, on average, 4× more unique targets than random generation and 3.5×
more than ART with distance computation.

2 Related Work

2.1 Adaptive Random Testing

Since its initial formulation [9], numerous variants of Adaptive Random Testing [9] (ART) have been
developed. These approaches primarily focus on either partitioning the input space to enable random
samplingwithin each partition [10, 26], orminimizing the number of distance computations required
to find the nearest element. The latter is accomplished through techniques such as “forgetting”
prior selections [8], or by structuring the selections more efficiently within appropriate data
structures [22].
A recent and notable example of the latter is KDFC-ART [22] that attempts to mitigate the

quadratic cost of distance computation in ART by taking advantage of 𝑘-dimensional trees (KD-
trees) [4]. Instead of computing the distance between each candidate test and all previously executed
tests, a KD-tree is traversed to find the subset of previously executed tests in the nearest neighbour.
However, there is no guarantee that the test at minimum distance belongs to the KD-tree node
representing the nearest neighbour. Consequently, the algorithm may need to backtrack, and in the

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 3

worst-case scenario (a full backtrack to the tree root), the computational cost remains quadratic.
Additionally, this method, as the majority of ART variants, is limited to fixed-size numeric vectors,
excluding programs that handle strings or variable-sized vectors/data structures.

Barus et al [3] introduced the ArtSum algorithm, a linear-order ART method for software with
non-numeric inputs. ArtSum uses a distance measure based on manually pre-selected categories
of inputs, treating any two different choices for a category as distinct without considering their
degree of difference. This approach allows the distance of a new candidate to all previously selected
inputs to be computed in linear time, significantly enhancing computational efficiency. However,
this method requires the identification of suitable categories and choices, which may demand
extensive domain knowledge and effort from testers. Additionally, it is unclear how to handle
inputs containing both numeric and discrete values.
Compared to existing methods for fixed-size candidate-set ART, our approach is applicable to

combinations of inputs or test steps of any type (as they can be serialized to strings), operates in
linear time, and ensures that updates occur only when a formally defined diversity measure, such
as entropy, is improved.

2.2 Diversity-based Test Generation and Selection

Elgendy et al. provide a comprehensive survey of diversity-based techniques in software testing,
identifying over 70 distinct metrics, with the most common artifacts being test scripts or test
inputs [14]. While many distance metrics1 are specific to data types (e.g., extended subtree met-
rics [25]) or tailored to particular applications or approaches, several are general enough to be
applicable across various data types or scenarios.

A recent empirical study comparing various general diversity metrics for selecting small subsets
from large, automatically generated test suites [13], found that the normalized compression distance,
first proposed for software testing by Feldt et al. [16], was the most effective for fault detection.
However, compression is often computationally expensive, particularly when scaled to a set of
objects, such as the Test Set Diameter, which has a quadratic cost relative to the test set size [15].

Entropy offers a fast and flexible measure for quantifying information uncertainty based on the
distribution of counts or frequencies of objects or symbols [23], with its intrinsic link to compression
and diversity measures often highlighted [28]. Shimari et al. [29] used entropy as a diversity
metric by evaluating the distribution of test case distances, showing that this “distance entropy”
outperformed simpler diversity metrics without added computational complexity. Another method
for applying entropy in test case diversity involves Qgram language models, as demonstrated by
Leveau et al. [21], who used this technique to increase the diversity of exploratory testers and
improve their fault-detection abilities in web application testing. In the same domain, Biagiola et
al. [6] employed sequence edit distance to ensure diversity among web test cases.

3 Background on Adaptive Random Testing

3.1 Algorithm

Algorithm 1 shows the pseudocode describing the general test generation procedure behind Adap-
tive Random Testing (ART) [9]. The key difference with respect to random testing (Rand) is that
ART evaluates a set of randomly generated candidates (𝑊 at Line 4) for their diversity w.r.t. the
previously executed tests. Diversity is assessed as the distance between the candidates (set𝑊) and
the archive 𝑍 of previously executed tests (Lines 5—7). The test𝑤∗ with maximum distance2 from

1Referred to as similarity metrics in Elgendy et al.’s survey; however, similarity metrics can typically be converted into
distance metrics, so we use the latter term here.
2Actually, the maxi-min, i.e. the largest minimum distance, is typically used even though other choices are also possible.

, Vol. 1, No. 1, Article . Publication date: January 2025.

4 Biagiola et al.

Algorithm 1: ART with pairwise distance computation (Dist) (pseudocode adapted from
Arcuri and Briand [1])
1 𝑍 = {} ;
2 add a random test case to 𝑍 and execute it ;
3 while stopping criterion not satisfied do

4 sample set𝑊 of random test cases ;
5 foreach𝑤 ∈𝑊 do

6 𝑤 .minD = min(dist(𝑤 , 𝑧 ∈ 𝑍)) ;
7 end

8 𝑤∗ = argmax𝑤∈𝑊 {𝑤 .minD } ;
9 execute𝑤∗

and add it to 𝑍 ;
10 end

the archive among the candidates is executed and added to the archive (Lines 8–9). The specific
distance metric used to quantify diversity is problem dependent and can be for instance Euclidean
distance when the test input is a tuple of numbers or string edit distance if the input is a string.
At each iteration of the main loop, Algorithm 1 performs |𝑊 | × |𝑍 | distance computations. As

shown formally in previous work [1], if the algorithm stops after executing 𝜌 test cases, the number
of distance computations it requires is quadratic with 𝜌 :

∑𝜌−1
𝑖=1 |𝑊 |𝑖 = |𝑊 |𝜌 (𝜌 − 1) = Θ(𝜌2).

3.2 Illusion of Effectiveness

In their paper [1], Arcuri and Briand point out that the quadratic cost of distance computations in
ART will diminish the time available for executing test cases, potentially negating the benefits ART
is supposed to bring over random testing (Rand). They conducted repeated simulation experiments
on the triangle classification program, focusing on a mutant with an estimated failure probability of
𝜃 = 1.51 · 10−5. Their results showed no statistically significant difference between ART and Rand
in the number of test cases needed to be sampled. However, they found a significant difference in
execution time: ART took an average of 47.7 minutes to expose the fault (kill the mutant), while
Rand required only 10.3 milliseconds. This stark contrast is largely attributable to the substantial
overhead introduced by distance computations in ART.
Arcuri and Briand, based on the results of their simulation experiment, then analyzed why

empirical evidence appears to favor ART over Rand, describing this as an “illusion of effectiveness”.
They arrived at several key conclusions: (1) existing studies relied on unrealistic assumptions (i.e.,
very high failure rates (𝜃)); (2) these studies examined only a small set of programs, with faults
introduced in an unsystematic manner (i.e., failing to ensure low 𝜃); (3) most studies focused solely
on the number of test executions needed to expose a fault, neglecting the time ART requires for
distance computation, which Rand can use to detect faults sooner; and (4) automated oracles
(except for simple crash oracles) were rarely employed.

The authors [1] also examine another important performance metric: the probability of exposing
a failure with a small number of tests (specifically, ranging from 15 to 50). They found that ART has
a significantly higher fault detection probability than Rand in this scenario. However, they note
that the probability remains quite low, making it unlikely that a small test sample would reliably
trigger a failure. Additionally, they prove a theorem showing that ART’s advantage over Rand
diminishes as the failure rate (𝜃) increases, where diversity offers fewer benefits for fault detection.
Arcuri and Briand [1] consider also the possible advantages of ART over Rand when a single

execution of the program under test is expensive. Assuming ART’s capability of doubling the failure

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 5

exposure probability 𝜃 (in line with the empirical evidence available from the literature), the cost
of distance computation is amortized only when it is lower than half the cost of program execution.
The condition is expressed as: |𝑊 | 12𝜃 ((

1
2𝜃 − 1)/2)𝑡𝑑 + 1

2𝜃 𝑡𝑒 < 1
𝜃
𝑡𝑒 , where 𝑡𝑑 represents the time for a

single distance computation and 𝑡𝑒 the time for a single test case execution. In their example, with
𝜃 = 1.51 · 10−5 and |𝑊 | = 10, this would require the test execution time to be 1.65 · 105 times longer
than the distance computation time for ART to have an advantage, a scenario they consider highly
unlikely in practice.

4 Approach

4.1 Framework

In order to reduce the quadratic cost for distance computation required by the original ART
algorithm, we need a faster way to compare each new candidate from𝑊 (see Algorithm 1) with
the archive of previously executed tests 𝑍 . The main idea behind our approach is that the archive
𝑍 can be mapped to an aggregate representation 𝑢, which can be directly compared with each
𝑤 ∈𝑊 without having to repeat the comparison for each 𝑧 ∈ 𝑍 . The other assumption that we
make is that the aggregate representation of the archive, 𝑢, can be efficiently updated whenever
a new element 𝑧 is added to the archive 𝑍 . Without loss of generality, we make the assumption
that 𝑢 belongs to R𝑘 , as commonly done with numeric embeddings of complex input spaces, with 𝑘
being the embedding dimensionality. Hence, we can formalize our framework as:

∃𝑔 : P(𝐼) → R𝑘 ∃ℎ : R𝑘 × 𝐼 → R𝑘 ∃𝑑 : R𝑘 × 𝐼 → R

∀(𝑢, 𝑖) ∈ R𝑘 × 𝐼 , 𝑢 = 𝑔(𝑍)
𝑍 ∈ P(𝐼) ⇒ ℎ(𝑢, 𝑖) = 𝑔(𝑍 ∪ {𝑖})

For a program under test 𝑃 that transforms an input 𝑖 ∈ 𝐼 into an output 𝑜 ∈ 𝑂 , we assume we
can define an aggregation function 𝑔 that transforms a set of input values from the powerset P(𝐼)
into its embedding form R𝑘 . This is the function that defines the aggregate representation 𝑢 of an
archive of tests 𝑍 : 𝑢 = 𝑔(𝑍). The second assumption is that a new aggregate representation can be
computed incrementally from a previous one through function ℎ. Given the previous embedding 𝑢
of the current archive 𝑍 , for a new input 𝑖 ∈ 𝐼 we can efficiently obtain the embedding of 𝑍 ∪ {𝑖}
by just applying ℎ to 𝑢 and 𝑖 , i.e., by computing ℎ(𝑢, 𝑖). The last assumption of our framework is
that a diversity function 𝑑 can be efficiently computed given the embedding 𝑢 ∈ R𝑘 of the archive
𝑍 ∈ P(𝐼) and a new input 𝑖 ∈ 𝐼 .

There are several ways to instantiate our general framework, including incremental clustering,
compression algorithms, or Qgrams. Qgrams are particularly appealing since they are conceptually
simple and because they work on strings, and any program input can be represented as a string,
thus increasing their applicability. Their simplicity also makes them easy to implement, which is
crucial for ART, as it can allow higher performance. One possible embedding, 𝑔, based on Qgrams,
is the Qgram count. For example, consider an archive 𝑍 containing the strings “aba”, “abb”, and
“bc”. The vocabulary of bigrams (with 𝑄 = 2) includes “ab”, “ba”, “bb”, and “bc”. The bigram count
embedding of 𝑍 would be:𝐺 (𝑍) = ⟨2, 1, 1, 1⟩, where the first entry reflects that “ab” appears twice,
and the remaining bigrams appear once each.3
The incremental embedding update function ℎ is simply a function that updates the bigram

counts. For instance, given the embedding 𝐺 (𝑍) = ⟨2, 1, 1, 1⟩, the input string “abc” determines

3In practice, this embedding is more efficiently represented as a dictionary rather than a vector, enabling also fast updates.

, Vol. 1, No. 1, Article . Publication date: January 2025.

6 Biagiola et al.

the following update of the embedding: ⟨2, 1, 1, 1⟩ → ⟨3, 1, 1, 2⟩, as the two bigrams “ab” and “bc”
appear once in the new input string.
Given the bigram counts of archive 𝑍 and input 𝑖 , there are various ways in which a diversity

function 𝑑 can be defined, e.g., measuring Gini impurity [7] or entropy [27] of the union bigram
set. Let us consider entropy: given the embedding 𝐺 (𝑍) = ⟨2, 1, 1, 1⟩ and the input string “abc”, we
can measure the entropy 𝐻 of the updated embedding ⟨3, 1, 1, 2⟩ by first converting counts into
probabilities, and then applying the usual definition of entropy, i.e., 𝐻 (⟨3/7, 1/7, 1/7, 2/7⟩) = 1.84.

4.2 Algorithm

Algorithm 2: ART with Qgram aggregation
1 𝑍 = {} ;
2 add a random test case to 𝑍 and execute it ;
3 Qcount = computeQgramCounts(𝑍) ;
4 while stopping criterion not satisfied do

5 sample set𝑊 of random test cases ;
6 foreach𝑤 ∈𝑊 do

7 𝑤 .ent = entropy(Qcount.add(computeQgramCounts(𝑤))) ;
8 end

9 𝑤∗ = argmax𝑤∈𝑊 {𝑤 .ent } ;
10 execute𝑤∗

and add it to 𝑍 ;
11 Qcount = Qcount.add(computeQgramCounts(𝑤∗)) ;
12 end

Algorithm 2 instantiates our framework with Qgrams. The aggregate representation Qcount of
the previously executed inputs that are stored in the archive 𝑍 is just the Qgram counts, which
can be efficiently represented as a dictionary mapping a Qgram to its occurrence count (e.g.,
Qcount[“ab”] = 2 if the bigram “ab” appears twice in 𝑍). Qcount is initialized at Line 3 with the
Qgram counts of the initial, random input, added to 𝑍 at Line 2.

Within the main test generation loop (Lines 4—12), the diversity of each new candidate𝑤 from
𝑊 is determined by temporarily adding the Qgram counts for 𝑤 to those previously computed
for 𝑍 and stored in the dictionary Qcount, and then computing the entropy of the resulting counts
(Line 7). The candidate input𝑤∗ with maximum entropy, indicating higher diversity, is selected for
execution (Lines 9–10) and its counts are used to update the dictionary of Qgram counts (Line 11).

At each iteration of themain loop, Algorithm 2 performs |𝑊 | diversity (i.e., entropy) computations.
If the algorithm stops after executing 𝜌 test cases, the number of diversity computations it requires
is linear with 𝜌 :

∑𝜌−1
𝑖=1 |𝑊 | = |𝑊 | (𝜌 − 1) = Θ(𝜌).

Let us consider the potential advantages of ART with Qgram aggregation over Rand when
the cost of executing a single test is high, following the analysis and example by Arcuri and
Briand [1]. Assuming ART can double the failure exposure probability 𝜃 , the cost of entropy
computation now becomes justified when it is less than half the cost of a program execution:
|𝑊 | (1

2𝜃 − 1)𝑡ℎ + 1
2𝜃 𝑡𝑒 < 1

𝜃
𝑡𝑒 , where 𝑡ℎ is the time for a single entropy computation, and 𝑡𝑒 is the time

for a single test case execution. For 𝜃 = 1.51 · 10−5 and |𝑊 | = 10, the test execution time would
now need only to be 10 times longer than the entropy computation time–a scenario that is feasible
in practice, e.g. when testing complex systems like multi-tier web applications.

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 7

5 Simulation Results

We conducted our simulation experiments on a Python function that determines if the input string
is palindrome, as our Qgrams based approach is directly applicable to string inputs. In particular,
we chose 𝑄 = 2, measuring the diversity of the inputs using bigrams. We created a mutant of this
function such that the failure probability (i.e., the probability of observing a different output in
the original vs the mutant) depends on the maximum string length 𝐿. The failure probability for
this mutant can be shown to be approximately 𝜃 = 1/𝐿. Hence, by choosing 𝐿 from the set {100,
1,000, 10,000, 66,225 } we can explore the behaviour of ART with Qgram aggregation (simply
called Qgrams in the following) vs Rand when 𝜃 ranges from 10−2 to 1.51 · 10−5, with the latter
value matching exactly the failure probability considered by Arcuri and Briand in their simulation
experiments [1].

Table 1. Results of simulation experiments with no delay (left) and with 10 𝑚𝑠 delay (right). The failure

probability is approximately 1 / L, with L being the length of the input string. Results with relative standard

error above the threshold (0.05) are in italics, while the highest P-measure and lowest F/T-measures values are

bolded. Underlined values indicate statistical significance of the differences. The grey-colored rows separate

the experiments with different lengths.

No delay 10ms delay

L Fail. Prob. Generator P-measure ↑ F-measure ↓ T-measure (s) ↓ F-measure ↓ T-measure (s) ↓

100 1.00E-02 Rand 9.82E-03 100.2 0.00107 98.2 1.15

100 1.00E-02 Dist 2.99E-02 47.5 5.566 N/A N/A
100 1.00E-02 Qgrams 3.90E-04 122.9 0.1365 120.7 2.1

1,000 1.00E-03 Rand 1.06E-03 985.24 0.1045 985 13.48

1,000 1.00E-03 Dist 4.73E-03 252.16 70.01 N/A N/A
1,000 1.00E-03 Qgrams 8.08E-04 167.93 0.4591 170.8 3.33

10,000 1.00E-04 Rand 1.09E-04 9,542.30 30.82 9,461.70 616

10,000 1.00E-04 Qgrams 2.63E-04 1,050.50 76.83 1,200.20 40.16
66,225 1.50E-05 Rand 1.62E-05 63,815.60 3,103.2 58,397.70 6,037.50

66,225 1.50E-05 Qgrams 5.58E-05 6,190.90 5,259.80 4,826 2,520.8

Following the recommendations of Arcuri and Briand [1], we consider three key performance
metrics in our experiments: (1) P-measure, the probability of exposing a fault (i.e., killing the
mutant) within a limited number of test executions (50 in our case), where a higher value indicates
better performance; (2) F-measure, the number of test executions required to expose the fault,
with a lower value being preferable; and (3) T-measure, the total execution time, in seconds, before
exposing the fault, where lower times are better.
While P-measure and F-measure gauge effectiveness without considering the time needed

for diversity computation, T-measure is the decisive metric for comparing ART and Rand, as it
accounts for the full computation time each algorithm requires to expose a fault. However, because
the execution time for the palindrome-checking function in our setup is extremely low (on the
order of 𝜇𝑠), P-measure and F-measure still serve as useful indicators for scenarios where higher
execution times might make ART’s overhead for diversity computation worthwhile. To simulate
such conditions, we introduced a 10𝑚𝑠 delay into the palindrome-checking function, mimicking a
long-running program. We report results for the function both with and without this delay.
We conducted most experiments on a MacBook Pro with an M3 chip and 24 GB of memory.

For long-running experiments (e.g., those with 𝐿 = 66, 225), we used AWS, running them on an

, Vol. 1, No. 1, Article . Publication date: January 2025.

8 Biagiola et al.

EC2 T3.large instance with 2 vCPUs, 8 GB of memory, and Ubuntu as the operating system. To
ensure accurate time measurements, we used the same hardware for each value of 𝐿, allowing
for consistent comparisons across failure probabilities. Rather than pre-defining the number of
experiment repetitions, we incrementally increased repetitions until the relative standard error
of the metrics (P-measure, F-measure, T-measure) fell below 0.05. In some cases, this required
a substantial number of repetitions (up to 100,000). Overall, we completed 417,956 experiment
repetitions, where each experiment involved either generating 50 test inputs (for P-measure) or
generating inputs until a failure was observed (for F/T-measure).
Table 1 shows the outcomes of our simulation experiments. For each maximum input string

length (Column 1) L, corresponding to a failure probability of approximately 1 / L, we compare
Rand, ART using string edit distance (Dist), and ART with bigram aggregation (i.e., Qgrams)
across the P-measure, F-measure, and T-measure metrics. When L reaches 10,000 or 66,225, Dist
becomes impractical due to the high cost of distance computation, so these rows exclude Dist.
Values in italics indicate cases where the relative standard error could not be reduced below the 0.05
threshold within the experiment’s 3-month time budget. For each failure probability, the highest
P-measure and lowest F/T-measure values are bolded, and underlined when statistically significant
differences, determined by the Wilcoxon rank sum test [32] at 𝛼 = 0.05, are observed between
methods.

The probability of exposing a fault (P-measure) is generally higher for Dist compared to Rand
and Qgrams, but Dist does not scale beyond L = 1,000. At higher failure probabilities (L = 100),
Qgrams not only perform poorly but actually hinder performance, with a P-measure significantly
lower than that of Rand. SinceDist performswell in this scenario, one possible explanation could be
that bigrams are simply less effective at capturing diversity for small inputs. As failure probabilities
decrease, however, Qgrams become increasingly effective, outperforming other techniques by 2.6×
at L = 10,000 and 3.4× at L = 66,225. In such cases, random approaches struggle to hit the small
failing region, while diversity helps the generator better explore and cover it.
The F-measure results align with the ones for the P-measure. At high failure probabilities (low

L), Dist requires the fewest executions to expose a fault, followed by Rand and then Qgrams.
However, as failure probabilities decrease, Dist becomes impractical, and the diversity introduced
by Qgrams proves beneficial. At L = 10,000 and L = 66,225, Qgrams accelerates fault discovery
by roughly 10× compared to Rand. This demonstrates that Qgrams scales well to lower failure
probabilities, requiring fewer executions than Rand to uncover faults.
The T-measure metric indicates that Rand is the fastest, followed by Qgrams and Dist, which

exceeds the former by a huge amount, becoming inapplicable at L = 10,000. Since results in Table 1
indicate that Rand has a decreasing speedup over Qgrams as the failure probability is reduced, we
conjecture that at low failure probabilities Qgrams might become convenient when the execution
time of the unit under test is substantially higher than the execution of a single Python function
(on average, the palindrome function requires 1.8 𝜇𝑠 to execute). We simulated this by introducing a
delay of 10𝑚𝑠 (last two columns of Table 1), making the execution 5𝑘 × higher than without delay.
While at high failure probabilities (L = 100) Rand remains convenient, we observe a substantial
advantage of Qgrams already at L = 1,000, where Qgrams is 4× faster.

Summary: Simulation experiments demonstrate that theARTwithQgram aggregation algorithm
scales effectively to low failure probabilities, exposing faults with a higher probability and
requiring fewer test executions than random test generation. However, the linear cost of Qgram
computation is only offset, making Qgrams the fastest in terms of clock time, when the unit
under test has a non-negligible execution time (e.g., 10 ms).

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 9

6 Experimental Results

6.1 Subjects

Table 2. Web application subjects implemented with different JS Frameworks [6].

Subject JS Framework LOC (JS) Stars Commits

retroboard React 2,144 775 966
dimeshift Backbone 5,140 194 204
phoenix React 2,289 >2,500 422
splittypie Ember.js 2,710 174 350
petclinic AngularJS 2,939 200 295
pagekit Vue.js 4,214 >5,500 4,933

Table 2 shows the six subject web applications we considered for our empirical study. We
considered all subjects in the benchmark proposed by Biagiola et al. [6], which have also been used
in other studies on web application testing [33, 34]. Such applications have been implemented with
different Javascript (JS) frameworks, and their size is representative of modern web applications
that use a JS framework [18].

6.2 Test Generation for Web Applications

The web testing approach proposed by Biagiola et al. [6] use Page Objects (POs) to model web
pages using classes. Each PO encapsulates all the methods that are responsible for the interaction
with the web page it represents, in an End-to-End (E2E) manner, i.e., through its Graphical User
Interface. The PO pattern was introduced by Fowler [17] to reduce the maintainability effort when
the web application evolves [19, 20], and the Selenium web testing framework strongly encourages
its use when developing E2E web tests [11]. From POs it is possible to extract a navigation model
of the web application, where nodes are POs and edges are the methods that bring the application
from a web page modeled with one PO to another [5].

Find

AddOwner
addNewOwner

Ownersfind(id)

Index
goToIndex

goToFind
add(name, address)

goToIndex

goToFind

search

goToIndex

findOwner(name)
goToFind

Fig. 1. Portion of the navigation model of the petclinic web application. Nodes represent pages of the web

application, while edges represent the actions that bring the application from one page to another. The home

page of the web application is highlighted in blue, while the path highlighted in bold represents an example

of a feasible navigation path.

Figure 1 shows a portion of the navigation model of the petclinic application, one of the
subjects we used in our study. The home page is modeled by the Index PO, highlighted in blue, with

, Vol. 1, No. 1, Article . Publication date: January 2025.

10 Biagiola et al.

two methods, i.e., goToFind, with no input arguments, and findOwner, that has one input argument
namely the name of the pet owner to look for. The other two methods with input arguments in the
model are the find method of the Find PO, and the add method of the AddOwner PO, respectively
with arguments id and add, address. The path goToFind → addNewOwner → add → goToFind
→ find, highlighted in bold, is an example of a feasible navigation path. Indeed, the methods in the
navigation graph may be constrained by one or more guards, also called preconditions. A guard is a
boolean condition that depends on the state of the web application, and on the input values of the
method. The state of the web application includes the DOM, and any data that is stored persistently
during the interaction. Biagiola et al. [6] define a path as feasible iff there exists a set of inputs for
all the methods in the path such that these methods can be executed correctly, i.e., all the guards
are satisfied. For instance, the highlighted path is feasible as it is possible to satisfy all its guards,
while the path goToFind→ find is not feasible, as no owner was added during the execution, and
there exists no id value that can satisfy the precondition of the find method of the Find PO.
Given a web application modeled with POs and its navigation model, a test generator extracts

abstract navigation paths by traversing the model and makes them concrete by generating input
values for the methods involved. For instance, a test case for the highlighted path in Figure 1 is 𝑡 =
⟨goToFind, addNewOwner, add(“John”, “My street”) , goToFind, find(0)⟩. Hence, the challenge
for a test generator in this context is that of extracting feasible paths and generating concrete tests
with the appropriate input values.

Biagiola et al. [6] use the ART framework described in Algorithm 1 with sequence edit distance
as a distance function to address the test generation problem. They considered two versions of
their diversity based test generator, where the distance function is either the method sequence
edit distance, or a combination of method sequence edit distance and input value distance. In
this paper, we only describe and experiment with the sequence-only version (called Dist in
the following), as their results show that the two are equivalent. For instance, let us consider
three test cases, i.e., 𝑡1 = ⟨goToFind, goToIndex⟩, 𝑤1 = ⟨findOwner(“John”), goToIndex⟩, and
𝑤2 = ⟨goToFind, find(1), goToFind, find(2)⟩, where 𝑡1 is already executed (i.e., 𝑡1 ∈ 𝑍 following
the notation of Algorithm 1 and Algorithm 2), while𝑤1 and𝑤2 are two candidate test cases (i.e.,
𝑤1, 𝑤2 ∈ 𝑊). To choose which one to execute, we evaluate the sequence edit distance w.r.t. 𝑡1,
obtaining a distance of 1 for 𝑤1, as there is one non-matching action in 𝑡1 to be replaced with
an action from 𝑤1 (i.e., goToFind in 𝑡1, replaced by findOwner in 𝑤1), and a distance of 3 for 𝑤3.
Hence, Dist selects𝑤2 as the next test to execute, as it is the farthest from 𝑡1.

We considered two versions of Qgrams, i.e., sequence-only (Qgramss for short), and sequence
plus inputs (Qgramss+i for short). In this example and in the experiments, we considered𝑄 = 2, i.e.,
bigrams. First, we compute the Qgram count for 𝑡1, shown in Table 3, which is the same for both
versions, as the two methods in the bigram (“goToFind”, “goToIndex”) have no input arguments.

Concerning Qgramss, the Qgram count for 𝑤1 adds the bigram (“findOwner”, “goToIndex”),
while 𝑤2 adds two more bigrams (second and third row of the leftmost table) w.r.t. 𝑡1, of which
the bigram (“goToFind”, “find”) appears twice. In contrast, Qgramss+i treats this as two distinct
bigrams because the input values to the find method differ at different points in the sequence
(id = 1 in the second position, and id = 2 in the fourth position). In both cases, the approach
selects candidate𝑤2 for execution, as its entropy is higher compared to𝑤1.

6.3 ResearchQuestions and Metrics

The goal of our empirical study is to evaluate the test generation capabilities of ART with Qgram
aggregation (Qgrams) in comparison to two competing techniques: ART with method sequence
edit distance (Dist) and random testing (Rand).

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 11

Table 3. Qgram count of Qgramss (left) and Qgramss+i (right) for the running example. Each row represents

a bigram (𝑄 = 2), i.e., a tuple of two method strings, while the columns show the counts of the corresponding

bigram in the respective test. The last row shows the entropy 𝐻 for the two candidates𝑤1 and𝑤2.

Qgramss

𝑡1 𝑤1 𝑤2

(“goToFind”, “goToIndex”) 1 1 1
(“findOwner”, “goToIndex”) 1
(“goToFind”, “find”) 2
(“find”, “goToFind”) 1

H 1.0 1.5

Qgramss+i

𝑡1 𝑤1 𝑤2

(“goToFind”, “goToIndex”) 1 1 1
(“findOwner(John)”, “goToIndex”) 1
(“goToFind”, “find(1)”) 1
(“find(1)”, “goToFind”) 1
(“goToFind”, “find(2)”) 1

H 1.0 2.0

RQ1 [Coverage] How does Qgrams compare to Dist and Rand in terms of coverage of the target

web applications, under a fixed test generation time budget?

In this research question, we explore whether real-world web applications possess the character-
istics that make Qgrams more effective than its competitors when given a fixed test generation
budget (8 hours in our experiments).
Metrics. The coverage metric we use is the number of edges covered in the navigation graph of
the web application under test. This measures a technique’s ability to generate test scenarios that
traverse deeply nested and hard-to-reach web pages.
RQ2 [Efficiency] How does Qgrams compare to Dist and Rand in terms of the speed at which

coverage grows as the number of generated tests increases?

With this research question, we investigate how quickly coverage expands, helping us assess
whether greater diversity leads to faster coverage of test targets.
Metrics.We measure the Area Under the Curve (AUC) from the plot that relates the number of
executed tests to the coverage achieved. Additionally, we calculate AUC@20%, which represents
the area under the curve when only 20% of the tests are executed. This accounts for scenarios with
limited test generation budgets. We use a percentage instead of an absolute number of tests to
accommodate variations in test execution times across different subjects.

RQ3 [Uniqueness] To what extent does Qgrams cover unique test targets that the competing test

generation techniques fail to cover?

This research question explores Qgrams’ ability to reach test targets that other approaches
might miss. Since these unique targets could potentially contain faults, covering them suggests an
increased likelihood of exposing bugs that other techniques might overlook.
Metrics. For each test generation repetition, we measure the number of test targets that are
uniquely covered by each technique.

RQ4 [Sequence Length] What is the relationship between the length of the test sequence and its

selection by Qgrams or Dist?

RQ4 examines whether any of the considered ART techniques achieve high diversity simply by
generating longer test sequences, which may not necessarily cover new test targets.
Metrics.We measure the length of the test sequences selected by Qgrams or Dist over the test
generation runs.

, Vol. 1, No. 1, Article . Publication date: January 2025.

12 Biagiola et al.

6.4 Experimental Procedure

In our empirical evaluation, we used the navigation graphs provided by Biagiola et al. [6] for the
respective web applications, as well as their implemented POs. Given a navigation model for a
certain web application, we follow the original paper and traverse the graph with a random walk
of a length chosen randomly in the interval [1, 𝐿], where 𝐿 = 40 is the maximum length. At each
iteration, we randomly select an edge/method in the graph that is not yet covered, we generate a
random walk starting from the index PO, and we connect the last node of the random walk with
the target node of the uncovered edge. Considering Dist, Qgramss and Qgramss+i, we generate
at each iteration |𝑊 | = 30 candidates, and we execute the one that increases diversity the most
according to the different methods (i.e., method sequence edit distance for Dist and entropy for
Qgramss and Qgramss+i). For Qgramss and Qgramss+i, we use𝑄 = 2, i.e., we keep track of bigram
counts during the execution.

We compared four techniques in our empirical study, i.e., Rand, Dist, Qgramss, and Qgramss+i,
executing each of them with a time budget of eight hours. To account for the inherent randomness
of the generation process, we executed each technique five times, and compared the results using
rigorous statistical tests [2]. In particular, we used the Wilcoxon rank sum test [32] to compute the
𝑝-value, with the confidence threshold 𝛼 = 0.05, and the Vargha-Delaney effect size (𝐴12) [31] to
assess the magnitude of the difference. Overall, we have six web applications, four techniques, an
eight hour time budget, and five repetitions for a total CPU time of 6 × 4 × 8ℎ × 5 = 960ℎ (or 40
CPU days).

6.5 Results

Table 4. Results for RQ1, RQ2, and RQ3. Web applications are ranked according to their complexity, shown in

the first two columns. The grey-colored rows represent medium-complexity web applications, separating low-

complexity (above), and high-complexity (below) applications. Bolded values represent the best average for

each metric, while underlined values represent a 𝑝-value < 0.05, and at least a medium effect size magnitude,

of Qgrams w.r.t. Rand and Dist.

Cpx. Rand Dist Qgramss+i Qgramss

#
T
a
r
g
e
t
s

#
D
i
ff
.
T
a
r
g
e
t
s

C
o
v
e
r
a
g
e
(
%
)

A
U
C

A
U
C
@
2
0
%

U
n
i
q
u
e
T
a
r
g
e
t
s

C
o
v
e
r
a
g
e
(
%
)

A
U
C

A
U
C
@
2
0
%

U
n
i
q
u
e
T
a
r
g
e
t
s

C
o
v
e
r
a
g
e
(
%
)

A
U
C

A
U
C
@
2
0
%

U
n
i
q
u
e
T
a
r
g
e
t
s

C
o
v
e
r
a
g
e
(
%
)

A
U
C

A
U
C
@
2
0
%

U
n
i
q
u
e
T
a
r
g
e
t
s

retroboard 29 0 93.10 0.84 0.14 0.60 91.03 0.88 0.16 0.40 87.59 0.84 0.16 0.20 89.66 0.85 0.15 0.40
dimeshift 72 0 88.61 0.81 0.13 1.00 87.78 0.85 0.14 0.80 86.94 0.81 0.14 1.40 84.72 0.75 0.12 1.20
phoenix 38 5 75.79 0.71 0.13 0.20 73.16 0.72 0.13 0.00 80.00 0.77 0.14 0.60 90.00 0.84 0.14 3.80

splittypie 44 6 82.73 0.77 0.12 0.20 82.27 0.80 0.14 0.20 91.36 0.87 0.15 1.60 87.73 0.82 0.14 0.20
petclinic 47 9 80.00 0.75 0.13 0.00 80.00 0.79 0.15 0.60 83.40 0.82 0.16 1.20 82.55 0.82 0.16 1.00
pagekit 212 34 80.28 0.76 0.13 0.40 78.30 0.76 0.14 0.80 81.89 0.79 0.14 1.40 83.59 0.80 0.14 3.60

Avg — — 83.42 0.77 0.13 0.40 82.09 0.80 0.14 0.47 85.20 0.82 0.15 1.07 86.38 0.81 0.14 1.70

RQ1 [Coverage]. The first two columns of Table 4 display the complexity of each web application
subject. We define complexity based on the number of difficult coverage targets (Column 2) and, as
a tiebreaker, the total number of coverage targets (Column 1), which corresponds to the number

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 13

of transitions in the navigation graphs. Difficult targets are those that Rand fails to cover in any
of the five repetitions. For example, retroboard has 29 coverage targets, all of which are covered
by Rand in at least one repetition. In contrast, pagekit has 212 coverage targets, with Rand
failing to cover 34 of them across all repetitions. Web applications are ranked by complexity in
Table 4, with retroboard and dimeshift being the least complex, phoenix, splittypie, and
petclinic having intermediate complexity, and pagekit as the most complex. This setup mirrors
the simulation experiments in Section 5, where instead of faults with varying failure probabilities,
we here deal with coverage targets that have varying probabilities of being reached.

Columns 3, 7, 11, and 15 of Table 4, show the average coverage, as a percentage of the total number
of targets, achieved in five repetitions by Rand,Dist,Qgramss+i andQgramss respectively, for each
web application subject. We observe that in the web application subjects with low complexity, i.e.,
retroboard, and dimeshift, Rand has the highest coverage on average, although the difference
with the other techniques is not statistically significant. On the other hand, for intermediate and
high complexity web applications, Qgrams techniques outperform both Rand and Dist in most
cases. Indeed, for phoenix, Qgramss covers significantly more than Rand and Dist with a large
effect size (90% vs 75.79% and 73.16% respectively), while the difference with Qgramss+i is not
statistically significant (Qgramss+i with an average coverage of 80% is significantly different from
Dist with a large effect size). For splittypie, Qgramss+i covers significantly more than Rand
and Dist with a large effect size (91.36% vs 82.73% and 82.27% respectively), while the difference
with Qgramss (87.73%) is not statistically significant. For petclinic, Qgramss+i has the highest
coverage, being very close to that of Qgramss (i.e., 83.40% vs 82.55%), although the difference with
Rand and Dist is not statistically significant (both have an average coverage of 80%). For pagekit,
both Qgramss+i and Qgramss+i cover significantly more than Rand and Dist, with a large effect
size (81.89% and 83.59% vs 80.28% and 78.30%); although Qgramss has the highest average coverage,
the difference with Qgramss+i is not statistically significant.
Figure 2 illustrates the coverage trends over the total number of executed tests. The solid lines

represent the average coverage across five repetitions, while the shaded areas indicate the standard
error of the mean. To ensure all techniques are displayed on the same plot, we aligned the data
to the technique that executed the highest number of tests (i.e., the longest sequence). Shorter
sequences were padded with their corresponding final values to match the length of the longest
sequence.

Due to space constraints, we selected three representative web applications of varying complexity:
retroboard (low complexity), phoenix (intermediate complexity), and pagekit (high complexity).
Full results are available in the replication package [30]. For each web application, the full plot is
shown on the left, and a zoomed-in view of the last half of the test executions is on the right.
In retroboard, all techniques converge closely by the end, as shown by the overlapping un-

certainties, with no technique clearly outperforming the others, though Rand (red line) achieves
the highest average coverage. In phoenix, which contains harder-to-reach targets for Rand, the
techniques are more spread out, with Qgramss (blue line) further apart, and Qgramss+i (orange
line) slightly overlapping with Rand. In the high-complexity subject pagekit, the separation
between Qgrams and the other techniques becomes even more pronounced, with both Qgramss
and Qgramss+i showing a clear advantage over Rand and Dist, with no overlap.

RQ1 [Coverage]: In intermediate and high complexity web applications, Qgrams techniques
outperform both Rand and Dist. In three out of four such cases, this improvement is statistically
significant, with coverage gains ranging from 4% (petclinic) to 18% (splittypie).

, Vol. 1, No. 1, Article . Publication date: January 2025.

14 Biagiola et al.

Fig. 2. Coverage over number of executed tests for three subjects and all techniques Rand, Dist,

Qgramss, Qgramss+i. Solid lines represent the average over five repetitions, while the shaded areas

around them represent the standard error of the mean. Curves are padded with the respective last values,

such that all techniques have curves with the same number of points. The left hand side shows the coverage

trend considering all executed test cases, with a zoomed-in view of the latest half of the executed test cases

on the right. Best viewed in color.

RQ2 [Efficiency]. Columns 4, 8, 12, and 16 of Table 4, show the average area under the curve (AUC)
over five repetitions for all the techniques and subjects. Areas have been normalized between 0 and
1, by dividing them by the maximum area (the area of the rectangle with base the maximum number
of executed tests and height 100). The trend that we observe is similar to the coverage results. In low
complexity web application subjects, Dist has the highest AUC (0.88 and 0.85 in retroboard and
dimeshift respectively); Dist is significantly better than Rand (0.84) and Qgramss (0.85) with a
large effect size in retroboard, and it is significantly better than Qgramss (0.75) with a large effect
size in dimeshift. In phoenix and pagekit both Qgramss+i and Qgramss are significantly better
than Rand and Dist with a large effect size. Qgramss has the highest average in both subjects (i.e.,
0.84 and 0.80 respectively); the difference with Qgramss+i (0.77 and 0.79 respectively) is statistically
significant only in pagekit. In splittypie, Qgramss+i (0.87) is significantly better than Rand

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 15

(0.77), Dist (0.80) and Qgramss (0.82), while in petclinic both Qgramss+i and Qgramss achieve
the best average AUC (i.e., 0.82), although only the difference with Rand (0.75) is statistically
significant with a large effect size (the difference with Dist, with an AUC of 0.79, is not).
Columns 5, 9, 13, and 17 of Table 4, show the average area under the curve when considering

20% of the executed tests (AUC@20%). In this context, the differences are less pronounced than
when considering AUC (only in phoenix, Qgramss is significantly better than Rand and Dist),
although all diversity techniques significantly outperform Rand in five out of six applications
(except dimeshift, and in pagekit Dist is not statistically different from Rand). Interestingly,
Qgramss+i seems to always have the best AUC@20% average, that in low complexity subjects is
matched by Dist, while in intermediate to high complexity is matched by Qgramss (except in
splittypie, where Qgramss+i has the best average of all).
On the left hand side of Figure 2, we have a visual appreciation of the efficiency results. In

particular, at the beginning of each plot (metric AUC@20%), diversity-based techniques quickly
cover more targets (i.e., they are more efficient) than Rand.

Table 5. Test generation statistics. From left to right, the table shows average values of number of executed

tests (# Exec. Tests), length of a test case measured as number of statements (Length (# Stmts)), executed

time for each test in seconds (Exec. Time (s)), and time to generate a test in seconds (Gen. Time (s)).

Rand Dist Qgramss+i Qgramss

#
E
x
e
c
.
T
e
s
t
s

L
e
n
g
t
h
(
#
S
t
m
t
s
)

E
x
e
c
.
T
i
m
e
(
s
)

G
e
n
.
T
i
m
e
(
s
)

#
E
x
e
c
.
T
e
s
t
s

L
e
n
g
t
h
(
#
S
t
m
t
s
)

E
x
e
c
.
T
i
m
e
(
s
)

G
e
n
.
T
i
m
e
(
s
)

#
E
x
e
c
.
T
e
s
t
s

L
e
n
g
t
h
(
#
S
t
m
t
s
)

E
x
e
c
.
T
i
m
e
(
s
)

G
e
n
.
T
i
m
e
(
s
)

#
E
x
e
c
.
T
e
s
t
s

L
e
n
g
t
h
(
#
S
t
m
t
s
)

E
x
e
c
.
T
i
m
e
(
s
)

G
e
n
.
T
i
m
e
(
s
)

retroboard 4,584.6 33.04 2.99 0.01 1,260.0 59.13 3.45 16.28 4,618.0 15.81 2.49 0.35 4,750.2 14.76 2.41 0.32
dimeshift 4,136.8 34.69 3.57 0.01 1,192.0 58.80 3.98 17.06 4,047.2 32.98 3.36 0.38 3,962.0 30.34 3.56 0.33
phoenix 3,339.0 55.59 4.93 0.03 1,089.4 88.09 6.08 17.12 3,571.0 41.92 3.73 0.92 3,686.4 42.73 3.70 0.84

splittypie 4,618.8 36.28 2.81 0.01 1,257.8 60.70 3.02 16.76 4,247.0 31.91 2.91 0.49 4,468.2 36.12 2.82 0.40
petclinic 2,929.6 39.14 6.28 0.02 1,038.6 63.65 8.42 16.10 3,608.0 43.71 4.10 0.50 2,566.6 58.84 6.89 0.44
pagekit 3,654.8 35.51 4.53 0.03 1,135.0 57.98 5.29 17.02 3,274.8 42.15 4.63 0.81 3,409.2 38.51 4.41 0.74

Avg 3,877.3 39.04 4.19 0.02 1,162.1 64.73 5.04 16.72 3,894.3 34.75 3.54 0.58 3,807.1 36.88 3.97 0.51

Table 5 shows four statistics related to the test generation process for each technique and
each subject. Particularly useful to interpret the efficiency results are the number of executed
tests (Columns 1, 5, 9, and 13) and the time to generate a test case (Columns 4, 8, 12, and 16).
The generation time for diversity-based techniques consists of the time to generate the |𝑊 | = 30
candidate test cases (see Algorithm 1 and Algorithm 2), and the diversity maximization computation
to select the test case that will be executed. On the other hand, the generation time for Rand only
takes into account the time to generate a single test case. On average, considering all web application
subjects (last row of Table 5), Rand only spends 0.02 𝑠 in generating the test to execute, while Dist
is much more expensive, taking on average 16.7 𝑠 to generate a test case, as it scales quadratically
with the number of executed test cases. On the other hand, Qgrams techniques are very efficient
when selecting a test case to execute, taking on average 0.58 𝑠 and 0.51 𝑠 forQgramss+i andQgramss
respectively, as they scale linearly with the number of executed tests. The cost for generating and
selecting a test reflects on the total number of executed tests; indeed, Dist executes much less tests

, Vol. 1, No. 1, Article . Publication date: January 2025.

16 Biagiola et al.

than Rand on average (i.e., 1,162 vs 3,877), while Qgrams techniques execute a comparable number
of tests (3,894 and 3,807 respectively for Qgramss+i and Qgramss).
The different number of tests executed by each technique is visible in Figure 2, where right-

padding indicates that the budget finished (the curve was extended for the purpose of comparison
with the other techniques). Dist spends most of the budget for diversity computation, with its
coverage curves flattening much earlier than the competing techniques. On the other hand, Rand,
by executing many more tests than Dist, is able to achieve a higher overall coverage than Dist
if given enough time, although it is less efficient when a low test generation budget is available.
Qgrams techniques combine the best of both worlds, i.e., the efficiency of Dist at low budget
regimes (AUC@20%), and the ability to execute a comparable number of tests as Rand, at high
budget regimes. This combination allows Qgrams techniques to be more efficient overall (AUC),
especially in intermediate and high complexity subjects.

RQ2 [Efficiency]: Qgrams techniques are significantly more efficient than Rand in five out of
six subjects when the test generation budget is low (AUC@20%). With a higher test generation
budget, Qgrams techniques outperform both Rand and Dist in intermediate and high complexity
subjects, achieving statistical significance in three out of four cases, with AUC improvements
ranging from 3.7% (petclinic) to 16.7% (phoenix).

RQ3 [Uniqueness]. Columns 6, 10, 14 and 18 of Table 4, show the average number of coverage
targets that a certain technique uniquely covers in each repetition. For instance, Rand covers on
average 0.60 coverage targets in retroboard, that Dist, Qgramss+i and Qgramss do not cover;
Rand has the highest average of uniquely covered targets in retroboard, but the difference with
the other techniques is not statistically significant. In dimeshift, Qgramss+i has the highest
average (1.40), above Qgramss (1.20), Rand (1.0) and Dist (0.80); again the difference with the
other techniques is not significant. In phoenix, Qgramss covers significantly more unique targets
(3.80) than all the other techniques with a large effect size, with Qgramss+i ranking second (0.60).
Similarly, Qgramss covers significantly more unique targets (3.60) than the competing techniques
with a large effect size in pagekit, with again Qgramss+i ranking second (1.40). On the other hand,
Qgramss+i performs better than Qgramss in splittypie and petlicnic (1.60 and 1.20 vs 0.20 and
1.0 respectively); the difference with the other techniques is significant only in splittypie.

RQ3 [Uniqueness]: Qgrams techniques outperform Rand and Dist in intermediate and high
complexity web applications, achieving statistical significance in three out of four cases. In the
worst case (pagekit), Qgrams techniques cover 4.5× more unique targets than the best of Rand
and Dist, while in the best case (phoenix), they cover 19× more unique targets.

RQ4 [Sequence Length]. Columns 2, 6, 10, and 14 of Table 5 show the average length (measured
as number of statements) of the test cases selected for execution by each technique. We can observe
that Dist selects the longest test cases, with an average length of 64.73 statements. On the other
hand, Rand, Qgramss and Qgramss+i are quite comparable, featuring an average length of 39.04,
34.75, and 36.88 statements respectively. The length of the selected test case correlates with the
time it takes to execute it, shown in Columns 3, 7, 11, and 15 of Table 5. Dist has the highest
average with 5.04 𝑠 , followed by Rand with 4.19 𝑠 , Qgramss with 3.97 𝑠 and Qgramss+i with 3.54
𝑠 . The length of the selected test case is the reason why Qgrams techniques are able to execute
a comparable number of tests w.r.t. Rand, despite the higher generation time. In fact, the tests
selected by Qgrams techniques are overall shorter than the tests generated by Rand (the only
exception being petclinic, where both Qgramss+i and Qgramss select longer tests, and pagekit,
where both select slightly longer tests), compensating the longer generation time.

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 17

Fig. 3. Length of the selected tests over the number of executed tests for three subjects and all techniques

Rand, Dist, Qgramss, Qgramss+i. The length (y-axis) is expressed as number of statements.

Solid lines represent the average over five repetitions, while the shaded areas around them represent the

standard error of the mean. Each point is smoothed with a window size of 100, such that the trend is more

visible. Curves are truncated at the minimum number of executed tests across techniques, to display the

same number of points for all techniques. Best viewed in color.

Figure 3 shows the trends (smoothed over a window of size 100) of the selected test case length
over the number of executed tests of each technique for three subjects of different complexity,
i.e., retroboard, phoenix and pagekit (full results are available in the replication package [30]).
In all the plots, we observe that Dist tends to select the longest test cases to maximize diversity,
and this does not change as the test generation progresses. This is natural given that a longer
sequence allows more room for a high edit distance. The length of the test cases generated by Rand
is lower, but it also remains roughly constant as the number of executed tests increases. On the
other hand, both Qgrams techniques tend to select long tests at the beginning of the generation
process, while the length decreases as executed tests accumulate. Indeed, maximization of the
sequence edit distance can be achieved by selecting long test cases, while maximizing the entropy
of the Qgrams requires selecting unexplored, but not necessarily long, sequences of statements.
While selecting long sequences is beneficial to Qgrams at the beginning of the generation process,
to maximize diversity and to quickly cover high probability targets, hard to cover targets need a
more focused selection, which is facilitated by shorter, unexplored, sequences.

RQ4 [Sequence Length]: Dist selects long test cases from the beginning to the end of the
test generation process. On the other hand, Qgrams techniques tend to select long tests at the
beginning, while privileging shorter tests at the end, focusing the generation budget towards
unexplored sequences.

, Vol. 1, No. 1, Article . Publication date: January 2025.

18 Biagiola et al.

6.6 Discussion

Through theoretical analysis, simulations, and experiments on six web applications, we have
demonstrated that Qgram aggregation can transform the effectiveness of ART from an “illusion”
into a practical reality. While random testing or traditional ART can be effective at high failure
probabilities or for less complex programs under test, the ART with Qgram aggregation techniques
we have proposed have benefits for finding faults with lower failure probabilities or when programs
under test are of medium to high complexity.
Qgramss vs Qgramss+i. Our results show that considering input values leads to a slightly higher
efficiency, especially in low budget scenarios (i.e., AUC@20%). This might be explained by the
fact that Qgramss+i tend to select slightly longer tests than Qgramss throughout the generation
process (see Figure 3). On the other hand, considering method sequences only, seems to be more
effective coverage-wise. Indeed, in the cases when Qgramss+i is better, the difference is small
(3.6% in splittypie, and 0.85% in petclinic), while there is a larger difference when Qgramss
is better (1.7% in pagekit, where the difference is statistically significant, and 10% in phoenix).
Moreover, Qgramss tends to cover more unique targets than Qgramss+i on average (i.e., 1.70 vs 1.07
considering all the subjects). Although more experiments are needed to understand the impact of
input values on such metrics, our results suggest that Qgramss is the preferred Qgrams technique,
unless efficiency, especially at low budget regimes, is a priority.
Number of Candidates for Diversity Computation. In our experiments, we set the number of
candidates to |𝑊 | = 30, keeping it fixed throughout the test generation process. While a smaller
candidate pool may be sufficient early on for covering high-probability targets–making ART with
Qgram aggregation resemble Rand–a larger pool might prove beneficial later in the process
for selecting test cases that reach harder-to-cover targets. Dynamically adjusting the number of
candidates could improve overall coverage, a topic that future work should explore further.

6.7 Threats to validity

External validity. We evaluated our approach using a benchmark of six web applications and
with specific Qgram choices, which raises questions about generalization. However, our empirical
findings align with the theoretical analysis, suggesting that generalization may be feasible for
scenarios that meet the theoretical assumptions behind our approach–primarily the ability to define
Qgrams that allow the aggregation to be updated incrementally.
Conclusion validity. Following the best practices in empirical software engineering, we support
our conclusions by executing the experiments multiple times, and by assessing the statistical
significance of the differences using statistical tests and effect size measures [2].

7 Conclusion and Future Work

We propose a novel framework for Adaptive Random Testing (ART) that measures diversity through
an aggregation function updated incrementally. We instantiated this framework using Qgram
counts as the aggregation function and entropy as the diversity measure. Our theoretical analysis
shows that ART with Qgrams reduces the algorithmic cost from quadratic to linear, making
the cost of diversity computation easily offset when test execution times are sufficiently long.
Simulation results with a 10𝑚𝑠 test execution time, along with empirical results from six real-world
web applications, support these findings, demonstrating that ART with Qgram aggregation is
more effective and efficient than both ART with distance computation and random generation,
particularly for web applications with hard-to-cover targets.
In future work, we plan to explore alternative instantiations of our framework, such as using

other diversity metrics like Gini impurity [24] or compression based approaches [15]. We also

, Vol. 1, No. 1, Article . Publication date: January 2025.

Adaptive Random Testing with Qgrams 19

aim to investigate the broader applicability of our Qgram-based diversity framework beyond
test generation, including its potential use in test selection, test prioritization, and for automated
boundary value testing [12].

8 Data Availability

Our replication package is publicly available [30], making our results reproducible.

References

[1] Andrea Arcuri and Lionel C. Briand. 2011. Adaptive random testing: an illusion of effectiveness?. In Proceedings of the

20th International Symposium on Software Testing and Analysis ISSTA, Toronto, ON, Canada, July 17-21, 2011. 265–275.
[2] Andrea Arcuri and Lionel C. Briand. 2014. A Hitchhiker’s guide to statistical tests for assessing randomized algorithms

in software engineering. Softw. Test. Verification Reliab. 24, 3 (2014), 219–250. https://doi.org/10.1002/STVR.1486
[3] Arlinta C Barus, Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Robert Merkel, and Gregg Rothermel. 2016. A cost-effective

random testing method for programs with non-numeric inputs. IEEE Trans. Comput. 65, 12 (2016), 3509–3523.
[4] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 18, 9

(1975), 509–517.
[5] Matteo Biagiola, Filippo Ricca, and Paolo Tonella. 2017. Search Based Path and Input Data Generation for Web

Application Testing. In Search Based Software Engineering - 9th International Symposium, SSBSE 2017, Paderborn,

Germany, September 9-11, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10452), Tim Menzies and Justyna
Petke (Eds.). Springer, 18–32. https://doi.org/10.1007/978-3-319-66299-2_2

[6] Matteo Biagiola, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2019. Diversity-based web test generation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, ESEC/SIGSOFT FSE, Tallinn, Estonia. 142–153.
[7] Leo Breiman, J. H. Friedman, Richard A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.
[8] Kwok Ping Chan, TY Chen, and Dave Towey. 2006. Forgetting test cases. In 30th Annual International Computer

Software and Applications Conference (COMPSAC’06), Vol. 1. IEEE, 485–494.
[9] Tsong Yueh Chen, Hing Leung, and I. K. Mak. 2004. Adaptive Random Testing. In Advances in Computer Science -

ASIAN 2004, Chiang Mai, Thailand, December 8-10, 2004. 320–329.
[10] Tsong Yueh Chen, R Merkel, PK Wong, and G Eddy. 2004. Adaptive random testing through dynamic partitioning. In

Fourth International Conference on Quality Software, 2004. QSIC 2004. Proceedings. IEEE, 79–86.
[11] Software Freedom Conservancy. 2024. Page object models. https://www.selenium.dev/documentation/test_practices/

encouraged/page_object_models/. Accessed: 2024-09-01.
[12] Felix Dobslaw, Robert Feldt, and Francisco Gomes de Oliveira Neto. 2023. Automated black-box boundary value

detection. PeerJ Computer Science 9 (2023), e1625.
[13] Islam Elgendy, Robert Hierons, and Phil McMinn. 2024. Evaluating String Distance Metrics for Reducing Automatically

Generated Test Suites. In Proceedings of the 5th ACM/IEEE International Conference on Automation of Software Test (AST

2024). 171–181.
[14] Islam T. Elgendy, Robert M. Hierons, and Phil McMinn. 2023. A Survey of the Metrics, Uses, and Subjects of Diversity-

Based Techniques in Software Testing. CoRR abs/2311.09714 (2023). https://doi.org/10.48550/ARXIV.2311.09714
arXiv:2311.09714

[15] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. 2016. Test set diameter: Quantifying the diversity of sets of
test cases. In 2016 IEEE international conference on software testing, verification and validation (ICST). IEEE, 223–233.

[16] Robert Feldt, Richard Torkar, Tony Gorschek, and Wasif Afzal. 2008. Searching for cognitively diverse tests: Towards
universal test diversity metrics. In 2008 IEEE international conference on software testing verification and validation

workshop. IEEE, 178–186.
[17] Martin Fowler. 2013. PageObject. http://martinfowler.com/bliki/PageObject.html. Accessed: 2024-09-01.
[18] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. 2017. Detecting unknown inconsistencies in web

applications. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE

2017, Urbana, IL, USA, October 30 - November 03, 2017, Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.).
IEEE Computer Society, 566–577. https://doi.org/10.1109/ASE.2017.8115667

[19] Maurizio Leotta, Matteo Biagiola, Filippo Ricca, Mariano Ceccato, and Paolo Tonella. 2020. A Family of Experiments
to Assess the Impact of Page Object Pattern in Web Test Suite Development. In 13th IEEE International Conference

on Software Testing, Validation and Verification, ICST 2020, Porto, Portugal, October 24-28, 2020. IEEE, 263–273. https:
//doi.org/10.1109/ICST46399.2020.00035

[20] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Cristiano Spadaro. 2013. Improving Test Suites Maintainability with
the Page Object Pattern: An Industrial Case Study. In Sixth IEEE International Conference on Software Testing, Verification

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.1002/STVR.1486
https://doi.org/10.1007/978-3-319-66299-2_2
https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/
https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models/
https://doi.org/10.48550/ARXIV.2311.09714
https://arxiv.org/abs/2311.09714
http://martinfowler.com/bliki/PageObject.html
https://doi.org/10.1109/ASE.2017.8115667
https://doi.org/10.1109/ICST46399.2020.00035
https://doi.org/10.1109/ICST46399.2020.00035

20 Biagiola et al.

and Validation, ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, March 18-22, 2013. IEEE Computer Society,
108–113. https://doi.org/10.1109/ICSTW.2013.19

[21] Julien Leveau, Xavier Blanc, Laurent Réveillère, Jean-Rémy Falleri, and Romain Rouvoy. 2022. Fostering the diversity
of exploratory testing in web applications. Software Testing, Verification and Reliability 32, 5 (2022), e1827.

[22] Chengying Mao, Xuzheng Zhan, T. H. Tse, and Tsong Yueh Chen. 2019. KDFC-ART: a KD-tree approach to enhancing
Fixed-size-Candidate-set Adaptive Random Testing. IEEE Trans. Reliab. 68, 4 (2019), 1444–1469.

[23] Alfréd Rényi. 1961. On measures of entropy and information. In Proceedings of the fourth Berkeley symposium on

mathematical statistics and probability, volume 1: contributions to the theory of statistics, Vol. 4. University of California
Press, 547–562.

[24] Lior Rokach and Oded Maimon. 2005. Top-down induction of decision trees classifiers-a survey. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews) 35, 4 (2005), 476–487.
[25] Ali Shahbazi and James Miller. 2013. Extended subtree: a new similarity function for tree structured data. IEEE

Transactions on knowledge and Data Engineering 26, 4 (2013), 864–877.
[26] Ali Shahbazi, Andrew F Tappenden, and James Miller. 2012. Centroidal voronoi tessellations-a new approach to

random testing. IEEE Transactions on Software Engineering 39, 2 (2012), 163–183.
[27] Claude E. Shannon. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 3 (1948), 379–423.
[28] William B Sherwin. 2010. Entropy and information approaches to genetic diversity and its expression: genomic

geography. Entropy 12, 7 (2010), 1765–1798.
[29] Qingkai Shi, Zhenyu Chen, Chunrong Fang, Yang Feng, and Baowen Xu. 2015. Measuring the diversity of a test set

with distance entropy. IEEE transactions on reliability 65, 1 (2015), 19–27.
[30] testingautomated usi. 2024. https://github.com/testingautomated-usi/adaptive-tg-qgrams
[31] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the "CL" Common Language Effect

Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. http:
//www.jstor.org/stable/1165329

[32] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1, 6 (1945), 80–83. http:
//www.jstor.org/stable/3001968

[33] Rahul Krishna Yandrapally and Ali Mesbah. 2023. Fragment-Based Test Generation for Web Apps. IEEE Trans. Software

Eng. 49, 3 (2023), 1086–1101. https://doi.org/10.1109/TSE.2022.3171295
[34] Yan Zheng, Yi Liu, Xiaofei Xie, Yepang Liu, Lei Ma, Jianye Hao, and Yang Liu. 2021. Automatic Web Testing Using

Curiosity-Driven Reinforcement Learning. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE

2021, Madrid, Spain, 22-30 May 2021. IEEE, 423–435. https://doi.org/10.1109/ICSE43902.2021.00048

Received 12 September 2024

, Vol. 1, No. 1, Article . Publication date: January 2025.

https://doi.org/10.1109/ICSTW.2013.19
https://github.com/testingautomated-usi/adaptive-tg-qgrams
http://www.jstor.org/stable/1165329
http://www.jstor.org/stable/1165329
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
https://doi.org/10.1109/TSE.2022.3171295
https://doi.org/10.1109/ICSE43902.2021.00048

	Abstract
	1 Introduction
	2 Related Work
	2.1 Adaptive Random Testing
	2.2 Diversity-based Test Generation and Selection

	3 Background on Adaptive Random Testing
	3.1 Algorithm
	3.2 Illusion of Effectiveness

	4 Approach
	4.1 Framework
	4.2 Algorithm

	5 Simulation Results
	6 Experimental Results
	6.1 Subjects
	6.2 Test Generation for Web Applications
	6.3 Research Questions and Metrics
	6.4 Experimental Procedure
	6.5 Results
	6.6 Discussion
	6.7 Threats to validity

	7 Conclusion and Future Work
	8 Data Availability
	References

