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ABSTRACT

This report summarizes the results of the fourth edition of the
2024 Cyber-Physical Systems tool competition, held as part of the
SBFT’24 workshop. Three tools (AmbieGenVAE, CRAG, and Op-
tAngle) competed with the aim of triggering out-of-bounds errors
of two autonomous driving agents. The competitors were evaluated
based on the effectiveness in exposing failures and the diversity of
the discovered faulty tests. As in previous years, we report on the
experiment methodology, the competitors and the results.
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1 INTRODUCTION

Being among the most promising cyber-physical systems (CPSs),
self-driving vehicles experience continuous attention software en-
gineering research community [16] and industry [8]. Tool competi-
tions offer the opportunity to benchmark new testing approaches
and improve the state of the art.

As in previous years, we organized the fourth edition of the
SBFT Testing Tool Competition’s CPS track. This edition received
three submissions: AmbieGenVAE, CRAG, and OptAngle. This is
half as many submissions as in the previous edition, which we
attribute to the availability of a similar track targeting testing of
UAVs (a.k.a. Drones) [13]. Two teams that joined the previous edi-
tion improved their tools for this year’s competition. The OptAngle
team participated for the first time in the competition, confirming
the continued interest in this competition despite the availability
of new, alternative tracks.

Similar to previous editions, we provided the participants with
an updated version of the open-source test framework [15] together
with the documentation on how to use it (tutorials, instructions,
sample driving agents, and test generators). The test framework
encapsulates the definition of complex driving scenarios and their
execution in a simulator.
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Figure 1: A driving task for lane keeping assist systems

(right); test simulation in BeamNG.tech (left).

This year, we decided to re-use the same competition setup as last
year, hence reusing our test framework and the same version of the
BeamNG.tech simulator [4]. We also introduced a clustering-based
diversity metric based on the structural and behavioral features
of the tests we defined in the previous edition [5]. Clustering is a
common way to measure failure diversity in software testing, as
recent literature suggests [1, 6, 21]. We use such diversity metric
alongside the feature map coverage [19, 20] we used in the previous
edition. For the test subjects, we selected (1) BeamNG.AI, the driving
agent included with the BeamNG.tech simulator, and (2) a DL-
based driving agent based on the Dave-2 architecture proposed by
Bojarski et al. [7]. Both test subjects have been used in previous
research as well [10, 12, 17, 18].

As in previous years [5, 9, 14], we compared the competing tools
by running them multiple times on each test subject in order to
account for the stochastic nature of the tools. For the BeamNG.AI
agent, AmbieGenVAE by Humeniuk and Khomh [11] achieved
the best results, being minimally ahead of CRAG by Arcaini and
Cetinkaya [2] in all metrics. However, for Dave-2, CRAG achieved
by far the highest scores for all coverage metrics. OptAngle by
Babikian and Varró [3] generated the most test cases and valid
roads, and managed to discover the highest absolute number of
out-of-bounds errors for BeamNG.AI, but did not achieve as diverse
results as the other tools.

In the final ranking, CRAG placed first, ahead of AmbieGenVAE
and OptAngle.

2 EXPERIMENTAL COMPARISON

2.1 Competition Goal

The participants provided test generators that searched for road
shapes to challenge the test subjects off the road, i.e., out of bounds
(OOB). More specifically, the test subjects (“agents”) are two lane-
keeping assist systems (LKASs), which were tasked to follow a
two-lane road from the starting point to the end point, without
leaving the right lane [5].
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A test, i.e., a specification of a virtual road, is a sequence of road
points (◦) on a two-dimensional map (cf. Figure 1). These points
are then interpolated as cubic splines, such that the first and last
road points are the starting (△) and goal position (□), respectively.
The code pipeline is then tasked to initialize the given road in the
simulator, execute the test subject, and return the results of the
simulation to the test generator. Note that, as in previous years,
only valid roads are considered. Hence, a road should (i) not self-
intersect; (ii) not contain overly-sharp turns; and (iii) fully lie within
a fixed-size map. Competitors are subsequently evaluated based on
the diversity of their OOB-inducing tests, i.e., valid virtual roads
that cause the ego-car controlled by the agent under test to drive
off the lane.

2.2 Metrics

For this instance of the competition, we extended the evaluation to
include an additional diversity metric. More specifically, we consid-
ered feature maps, as in 2023, and a newly introduced clustering-
based metric. Both metrics characterize each OOB using both struc-
tural features (characteristics of the road) and behavioral features
(characteristics of the output of the simulator). Specifically, we
selected Direction Coverage and Maximum curvature as struc-
tural features, and Standard Deviation of the Steering Angle

andMean Lateral Position as behavioral features. Such features
have been empirically asssessed by by Zohdinasab et al. [20]. We
computed such features only on a relevant portion of the road input,
i.e., 30 meters before and after the OOB takes place.

Feature Map-based Metric. As in our previous edition, we used
these features to define a four-dimensional feature map where we
place road inputs causing a failure according to their features, such
that inputs with similar features are close in the feature map. Mea-
suring the coverage of such feature map, allows us to quantify how
diverse are the failure-inducing road inputs of a test generator. We
refer the reader to our previous report [5] for a detailed description
of how the feature map coverage is computed.

Clustering-based Metric. For each test subject, we considered all
the features of all the runs of all the tools for clustering. Before
clustering, we reduced each vector of features to two dimensions
using the UMAP dimensionality reduction technique [1], to obtain
better clustering scores. As clustering algorithm we used K-means
together with a Silhouette score analysis to choose the optimal num-
ber of clusters 𝐾∗ [6]. For each run 𝑖 , we computed the coverage of
each tool 𝑇 , i.e., 𝐶 (𝑖 )

cov, as the number of clusters that are covered by
at least one failure-inducing input generated by 𝑇 , divided by 𝐾∗.
Regarding the entropy, for each run 𝑖 , we computed the probability
𝑝
(𝑖 )
𝑗

of finding a failure generated by 𝑇 in cluster 𝑐 𝑗 ( 𝑗 = 1, . . . , 𝐾∗),

multiplied by log2 (𝑝
(𝑖 )
𝑗

). The entropy of 𝑇 for each run, i.e., 𝐶 (𝑖 )
ent ,

is the sum of all such quantities normalized by log2 (𝐾∗). Entropy
complements coverage as it quantifies how distributed are the fail-
ures across the clusters. The final coverage metric of𝑇 for a certain
test subject, i.e., 𝐶cov, is the average of the coverage metrics across
all the runs; this equivalently holds for the final entropy 𝐶ent.

Subsequently, we merged the metrics to calculate a weighted
average. The feature map-based (FM) and clustering-based metrics

are weighted equally, and within clustering, coverage 𝐶cov and
entropy 𝐶ent metrics are also weighted equally. Hence, the final
diversity score 𝐷 of a tool is calculated as:

Div = 𝐹𝑀 ∗ 0.5 +𝐶cov ∗ 0.25 +𝐶ent ∗ 0.25

2.3 Test Subjects

As the previous year [5], we chose two test subjects widely used in
the software testing literature: BeamNG.AI, a rule-based driving
agent shipped with the BeamNG.tech simulator1, and Dave-2, a
DL-based driving agent. The competitors had access to both test
subjects, but we did not disclose our final experimental setup.

2.4 Tools

We evaluated a total of three tools. Below, we briefly describe the
main characteristics of each of them. More information can be
found in the corresponding reports:
AmbieGenVAE [11] is a test generation approach that leverages
optimization with evolutionary search in a latent space of a pre-
trained variational autoencoder (VAE). The VAE is trained on a
dataset of diverse and valid test scenarios.
CRAG [2] is a generator of road scenarios for autonomous driving
testing combining combinatorial testing and search to generate
roads in which the car drives off the lane. The former explores high
level road configurations, while the latter samples concrete road
geometries in these configurations.
OptAngle [3] is a test generator for autonomous vehicles that
leverages meta-heuristic search over a road representation based on
relative angles between fixed-size road segments. It derives virtual
roads by optimizing for road structure validity, failures during test
execution, and test case diversity.

Table 1: Setups of the experiments for each subject.

Subject

Map Size Speed Limit Time Budget

OOB Tol.

(m x m) (km / h) (h)

BeamNG.AI 200 × 200 70 3 0.85
Dave-2 200 × 200 25 3 0.10

2.5 Experimental Procedure

We ran each tool 6 times for BeamNG.AI and Dave-2. The experi-
ment setups are described in Table 1. The BeamNG.AI agent has a
speed limit of 70 km/h with an OOB tolerance value of 0.85 and a
time budget of 3 h of real time. We executed the Dave-2 agent with
the same time budget, a speed limit of 25 km/h, and an OOB toler-
ance of 0.1. Thus, the Dave-2 agent drives more slowly but a lower
tolerance is used to trigger failures. To ensure a fair comparison, we
ran each tool the same number of times in each experiment setup.
We ran all experiments using version v.0.26.2.0 of BeamNG.tech,
on a desktop PC running Microsoft Windows 11 Pro and featuring
an eight-core Intel i9-9900K CPU @ 3.60GHz, 64 GB of RAM, and
an Nvidia Quadro RTX 4000 GPU.

1BeamNG.tech was kindly provided to all participants by BeamNG.GmbH
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Table 2: Statistics of tests generated by each tool and subject.

Bold indicates the best values.

Subject Tool #TCs %Val. OOBs

BeamNG.AI AmbieGenVAE 342.8 96.9 % 48.8
CRAG 311.8 97.8 % 41.2
OptAngle 366.3 98.2 % 167.2

Dave-2 AmbieGenVAE 231.5 96.3 % 2.3
CRAG 204.2 96.8 % 16.8

OptAngle 242.5 99.8 % 3.0

Table 3: Final ranking. Coverage values for each tool and

subject. Bold indicates the best values.

Tool

BeamNG.AI Dave-2

Div
𝐹𝑀 𝐶cov 𝐶ent Div𝐵 𝐹𝑀 𝐶cov 𝐶env Div𝐷

CRAG 0.11 0.24 0.68 0.29 0.14 0.96 0.91 0.54 0.41

AmbieGenVAE 0.13 0.26 0.70 0.30 0.02 0.35 0.31 0.18 0.24
OptAngle 0.05 0.15 0.54 0.20 0.02 0.13 0.10 0.07 0.13

3 RESULTS

3.1 Test Generation Effectiveness and Efficiency

Table 2 reports the number of generated test cases (#TCs), the per-
centage of valid roads (%Val.), and the number of failure-inducing
inputs (OOBs) produced by each tool (Tool) for each subject (Sub-
ject). The reported values are averages over the runs with the same
configuration.

We observe that OptAngle produces the highest number of test
cases for both test subjects, thus being the most efficient test gener-
ator in this competition. It also excels in producing the highest per-
centage of valid roads. Finally, we also see that for the BeamNG.AI
agent, OptAngle also produced the highest absolute number of
OOBs. Nonetheless, for Dave-2, CRAG showed a higher number
of OOBs than OptAngle. Furthermore, we see that for both test
subjects, CRAG produces the lowest number of total test cases, and
for BeamNG.AI even the lowest number of OOBs.

3.2 Final Scores

Table 3 reports the final ranking of the tools, computed as the aver-
age diversity Div of each tool. The table shows that, for BeamNG.AI,
AmbieGenVAE produces the best scores, leading in all three diver-
sity measures (𝐹𝑀 ,𝐶cov,𝐶ent); CRAG is just shortly behind (0.29 vs
0.30). OptAngle shows the lowest diversity scores for BeamNG.AI.
For Dave-2 we see that CRAG reached very high diversity scores.
This can be attributed to the fact, that it also discovered the highest
number of OOBs. AmbieGenVAE ranks second, and OptAngle third.

As for the final scores, the dominance in the Dave-2 competition
leads CRAG to win with a final score of 0.41, before AmbieGenVAE
(Div = 0.24), and OptAngle (Div = 0.13). As shown in Figure 2,
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Figure 2: Benchmark results. The box plots report, top-to-

bottom, the number of detected failures, the achieved Rel-

ative OOB Coverage (FM), the coverage clustering and the

entropy clustering in each configuration (BeamNG.AI left,

Dave-2 right).

the feature map coverage (second row) agrees with the clustering-
based coveragemetrics (third and fourth rows) for both test subjects.
Figure 3 shows the results of clustering the failures generated by all
the tools for the Dave-2 agent. We observe that CRAG (+) covers all
the clusters (Run # 5) and such failures are well distributed across
clusters (i.e., high entropy). On the other hand, OptAngle (◦) covers
only the red cluster in Run # 5, while AmbieGenVAE (★) uniformly
covers three clusters, resulting in a high entropy.

4 CONCLUSIONS AND FINAL REMARKS

The 2024 SBFT CPS testing tool competition focused on the chal-
lenge of evaluating and comparing test generators for autonomous
driving. In this fourth edition, three tools competed by testing two
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Figure 3: Results of clustering the failures of each tool for

the Dave-2 subject. Each color represents a different cluster

identified by the cluster centroid. The failures of the last run

are highlighted.

test subjects (BeamNG.AI and Dave-2) and generated inputs that
triggered failures of both systems. OptAngle generated the highest
number of valid roads for both subjects, and also found the highest
number of OOBs for BeamNG.AI. AmbieGenVAE and CRAG, on
the other hand, produced fewer, but more diverse roads.

Overall, the competition results showed that different search
approaches can be highly effective in discovering diverse test suites,
balancing the trade-off between exploration and exploitation. In the
final ranking, across all settings and evaluationmetrics, CRAG ranks
first, ahead of AmbieGenVAE and OptAngle, who place second and
third, respectively.
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